Mister Exam

Other calculators

Integral of sqrt(4+x^2)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     ________   
 |    /      2    
 |  \/  4 + x     
 |  ----------- dx
 |       x        
 |                
/                 
0                 
01x2+4xdx\int\limits_{0}^{1} \frac{\sqrt{x^{2} + 4}}{x}\, dx
Integral(sqrt(4 + x^2)/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                 
 |                                                                  
 |    ________                                                      
 |   /      2                                                       
 | \/  4 + x                   /2\         x                4       
 | ----------- dx = C - 2*asinh|-| + ------------- + ---------------
 |      x                      \x/        ________          ________
 |                                       /     4           /     4  
/                                       /  1 + --    x*   /  1 + -- 
                                       /        2        /        2 
                                     \/        x       \/        x  
x2+4xdx=C+x1+4x22asinh(2x)+4x1+4x2\int \frac{\sqrt{x^{2} + 4}}{x}\, dx = C + \frac{x}{\sqrt{1 + \frac{4}{x^{2}}}} - 2 \operatorname{asinh}{\left(\frac{2}{x} \right)} + \frac{4}{x \sqrt{1 + \frac{4}{x^{2}}}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2000020000
The answer [src]
oo - 2*asinh(2)
2asinh(2)+- 2 \operatorname{asinh}{\left(2 \right)} + \infty
=
=
oo - 2*asinh(2)
2asinh(2)+- 2 \operatorname{asinh}{\left(2 \right)} + \infty
oo - 2*asinh(2)
Numerical answer [src]
88.3022780173677
88.3022780173677

    Use the examples entering the upper and lower limits of integration.