Mister Exam

Other calculators:


log(1+x)/log(2+x)

Limit of the function log(1+x)/log(2+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /log(1 + x)\
 lim |----------|
x->oo\log(2 + x)/
limx(log(x+1)log(x+2))\lim_{x \to \infty}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right)
Limit(log(1 + x)/log(2 + x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxlog(x+1)=\lim_{x \to \infty} \log{\left(x + 1 \right)} = \infty
and limit for the denominator is
limxlog(x+2)=\lim_{x \to \infty} \log{\left(x + 2 \right)} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(log(x+1)log(x+2))\lim_{x \to \infty}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right)
=
limx(ddxlog(x+1)ddxlog(x+2))\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x + 1 \right)}}{\frac{d}{d x} \log{\left(x + 2 \right)}}\right)
=
limx(x+2x+1)\lim_{x \to \infty}\left(\frac{x + 2}{x + 1}\right)
=
limx(ddx(x+2)ddx(x+1))\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(x + 2\right)}{\frac{d}{d x} \left(x + 1\right)}\right)
=
limx1\lim_{x \to \infty} 1
=
limx1\lim_{x \to \infty} 1
=
11
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limx(log(x+1)log(x+2))=1\lim_{x \to \infty}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right) = 1
limx0(log(x+1)log(x+2))=0\lim_{x \to 0^-}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right) = 0
More at x→0 from the left
limx0+(log(x+1)log(x+2))=0\lim_{x \to 0^+}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right) = 0
More at x→0 from the right
limx1(log(x+1)log(x+2))=log(2)log(3)\lim_{x \to 1^-}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right) = \frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}
More at x→1 from the left
limx1+(log(x+1)log(x+2))=log(2)log(3)\lim_{x \to 1^+}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right) = \frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}
More at x→1 from the right
limx(log(x+1)log(x+2))=1\lim_{x \to -\infty}\left(\frac{\log{\left(x + 1 \right)}}{\log{\left(x + 2 \right)}}\right) = 1
More at x→-oo
The graph
Limit of the function log(1+x)/log(2+x)