$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{n} = e^{-5}$$ $$\lim_{n \to 0^-} \left(1 - \frac{5}{n}\right)^{n} = 1$$ More at n→0 from the left $$\lim_{n \to 0^+} \left(1 - \frac{5}{n}\right)^{n} = 1$$ More at n→0 from the right $$\lim_{n \to 1^-} \left(1 - \frac{5}{n}\right)^{n} = -4$$ More at n→1 from the left $$\lim_{n \to 1^+} \left(1 - \frac{5}{n}\right)^{n} = -4$$ More at n→1 from the right $$\lim_{n \to -\infty} \left(1 - \frac{5}{n}\right)^{n} = e^{-5}$$ More at n→-oo