Mister Exam

Other calculators:


(1-5/n)^n

Limit of the function (1-5/n)^n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            n
     /    5\ 
 lim |1 - -| 
n->oo\    n/ 
$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{n}$$
Limit((1 - 5/n)^n, n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{n}$$
transform
do replacement
$$u = \frac{n}{-5}$$
then
$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{n}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 5 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 5 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-5}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-5} = e^{-5}$$

The final answer:
$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{n} = e^{-5}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 -5
e  
$$e^{-5}$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{n} = e^{-5}$$
$$\lim_{n \to 0^-} \left(1 - \frac{5}{n}\right)^{n} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} \left(1 - \frac{5}{n}\right)^{n} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} \left(1 - \frac{5}{n}\right)^{n} = -4$$
More at n→1 from the left
$$\lim_{n \to 1^+} \left(1 - \frac{5}{n}\right)^{n} = -4$$
More at n→1 from the right
$$\lim_{n \to -\infty} \left(1 - \frac{5}{n}\right)^{n} = e^{-5}$$
More at n→-oo
The graph
Limit of the function (1-5/n)^n