Mister Exam

Other calculators:


2+((5-x)/(6-x))^x

Limit of the function 2+((5-x)/(6-x))^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /           x\
     |    /5 - x\ |
 lim |2 + |-----| |
x->oo\    \6 - x/ /
$$\lim_{x \to \infty}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right)$$
Limit(2 + ((5 - x)/(6 - x))^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
2 + E
$$2 + e$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 2 + e$$
$$\lim_{x \to 0^-}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 3$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = \frac{14}{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = \frac{14}{5}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 2 + e$$
More at x→-oo
The graph
Limit of the function 2+((5-x)/(6-x))^x