$$\lim_{x \to \infty}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 2 + e$$
$$\lim_{x \to 0^-}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 3$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 3$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = \frac{14}{5}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = \frac{14}{5}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\left(\frac{5 - x}{6 - x}\right)^{x} + 2\right) = 2 + e$$
More at x→-oo