Mister Exam

Other calculators:


-8+(1/5)^x

Limit of the function -8+(1/5)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /      -x\
 lim  \-8 + 5  /
x->-1+          
$$\lim_{x \to -1^+}\left(-8 + \left(\frac{1}{5}\right)^{x}\right)$$
Limit(-8 + (1/5)^x, x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-3
$$-3$$
One‐sided limits [src]
      /      -x\
 lim  \-8 + 5  /
x->-1+          
$$\lim_{x \to -1^+}\left(-8 + \left(\frac{1}{5}\right)^{x}\right)$$
-3
$$-3$$
= -3.0
      /      -x\
 lim  \-8 + 5  /
x->-1-          
$$\lim_{x \to -1^-}\left(-8 + \left(\frac{1}{5}\right)^{x}\right)$$
-3
$$-3$$
= -3.0
= -3.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = -3$$
More at x→-1 from the left
$$\lim_{x \to -1^+}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = -3$$
$$\lim_{x \to \infty}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = -8$$
More at x→oo
$$\lim_{x \to 0^-}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = -7$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = -7$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = - \frac{39}{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = - \frac{39}{5}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(-8 + \left(\frac{1}{5}\right)^{x}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-3.0
-3.0
The graph
Limit of the function -8+(1/5)^x