Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^2/(3+x^3-4*x)
Limit of -7+x^2-4*x-2*x^3
Limit of ((1+x)/(2+x))^(1+x)
Limit of ((-1+x)/(5+4*x))^(3*x)
Identical expressions
two +(one / three)^x
2 plus (1 divide by 3) to the power of x
two plus (one divide by three) to the power of x
2+(1/3)x
2+1/3x
2+1/3^x
2+(1 divide by 3)^x
Similar expressions
2-(1/3)^x
Limit of the function
/
2+(1/3)^x
Limit of the function 2+(1/3)^x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ -x\ lim \2 + 3 / x->-1+
lim
x
→
−
1
+
(
2
+
(
1
3
)
x
)
\lim_{x \to -1^+}\left(2 + \left(\frac{1}{3}\right)^{x}\right)
x
→
−
1
+
lim
(
2
+
(
3
1
)
x
)
Limit(2 + (1/3)^x, x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0
-1.5
-1.0
-0.5
2.0
0.0
0.5
1.0
1.5
0
20
Plot the graph
Rapid solution
[src]
5
5
5
5
Expand and simplify
One‐sided limits
[src]
/ -x\ lim \2 + 3 / x->-1+
lim
x
→
−
1
+
(
2
+
(
1
3
)
x
)
\lim_{x \to -1^+}\left(2 + \left(\frac{1}{3}\right)^{x}\right)
x
→
−
1
+
lim
(
2
+
(
3
1
)
x
)
5
5
5
5
= 5.0
/ -x\ lim \2 + 3 / x->-1-
lim
x
→
−
1
−
(
2
+
(
1
3
)
x
)
\lim_{x \to -1^-}\left(2 + \left(\frac{1}{3}\right)^{x}\right)
x
→
−
1
−
lim
(
2
+
(
3
1
)
x
)
5
5
5
5
= 5.0
= 5.0
Other limits x→0, -oo, +oo, 1
lim
x
→
−
1
−
(
2
+
(
1
3
)
x
)
=
5
\lim_{x \to -1^-}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = 5
x
→
−
1
−
lim
(
2
+
(
3
1
)
x
)
=
5
More at x→-1 from the left
lim
x
→
−
1
+
(
2
+
(
1
3
)
x
)
=
5
\lim_{x \to -1^+}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = 5
x
→
−
1
+
lim
(
2
+
(
3
1
)
x
)
=
5
lim
x
→
∞
(
2
+
(
1
3
)
x
)
=
2
\lim_{x \to \infty}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = 2
x
→
∞
lim
(
2
+
(
3
1
)
x
)
=
2
More at x→oo
lim
x
→
0
−
(
2
+
(
1
3
)
x
)
=
3
\lim_{x \to 0^-}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = 3
x
→
0
−
lim
(
2
+
(
3
1
)
x
)
=
3
More at x→0 from the left
lim
x
→
0
+
(
2
+
(
1
3
)
x
)
=
3
\lim_{x \to 0^+}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = 3
x
→
0
+
lim
(
2
+
(
3
1
)
x
)
=
3
More at x→0 from the right
lim
x
→
1
−
(
2
+
(
1
3
)
x
)
=
7
3
\lim_{x \to 1^-}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = \frac{7}{3}
x
→
1
−
lim
(
2
+
(
3
1
)
x
)
=
3
7
More at x→1 from the left
lim
x
→
1
+
(
2
+
(
1
3
)
x
)
=
7
3
\lim_{x \to 1^+}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = \frac{7}{3}
x
→
1
+
lim
(
2
+
(
3
1
)
x
)
=
3
7
More at x→1 from the right
lim
x
→
−
∞
(
2
+
(
1
3
)
x
)
=
∞
\lim_{x \to -\infty}\left(2 + \left(\frac{1}{3}\right)^{x}\right) = \infty
x
→
−
∞
lim
(
2
+
(
3
1
)
x
)
=
∞
More at x→-oo
Numerical answer
[src]
5.0
5.0
The graph