Mister Exam

Other calculators:


-x^2+2*x

Limit of the function -x^2+2*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2      \
 lim \- x  + 2*x/
x->2+            
$$\lim_{x \to 2^+}\left(- x^{2} + 2 x\right)$$
Limit(-x^2 + 2*x, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /   2      \
 lim \- x  + 2*x/
x->2+            
$$\lim_{x \to 2^+}\left(- x^{2} + 2 x\right)$$
0
$$0$$
= 7.97177948403636e-32
     /   2      \
 lim \- x  + 2*x/
x->2-            
$$\lim_{x \to 2^-}\left(- x^{2} + 2 x\right)$$
0
$$0$$
= 1.13943365149811e-31
= 1.13943365149811e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(- x^{2} + 2 x\right) = 0$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(- x^{2} + 2 x\right) = 0$$
$$\lim_{x \to \infty}\left(- x^{2} + 2 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{2} + 2 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} + 2 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{2} + 2 x\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} + 2 x\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{2} + 2 x\right) = -\infty$$
More at x→-oo
Numerical answer [src]
7.97177948403636e-32
7.97177948403636e-32
The graph
Limit of the function -x^2+2*x