Mister Exam

Other calculators:


-x

Limit of the function -x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-x)
x->0+    
$$\lim_{x \to 0^+}\left(- x\right)$$
Limit(-x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (-x)
x->0+    
$$\lim_{x \to 0^+}\left(- x\right)$$
0
$$0$$
= -8.5563925773619e-33
 lim (-x)
x->0-    
$$\lim_{x \to 0^-}\left(- x\right)$$
0
$$0$$
= 8.5563925773619e-33
= 8.5563925773619e-33
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x\right) = 0$$
$$\lim_{x \to \infty}\left(- x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(- x\right) = -1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x\right) = -1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x\right) = \infty$$
More at x→-oo
Numerical answer [src]
-8.5563925773619e-33
-8.5563925773619e-33
The graph
Limit of the function -x