We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} \tan{\left(5 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(5 x \right)}}{\sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(5 x \right)}}{\frac{d}{d x} \sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5 \tan^{2}{\left(5 x \right)} + 5}{2 \cos{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5 \tan^{2}{\left(5 x \right)}}{2} + \frac{5}{2}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5 \tan^{2}{\left(5 x \right)}}{2} + \frac{5}{2}\right)$$
=
$$\frac{5}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)