Mister Exam

Other calculators:


tan(5*x)/sin(2*x)

Limit of the function tan(5*x)/sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(5*x)\
 lim |--------|
x->0+\sin(2*x)/
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(5 x \right)}}{\sin{\left(2 x \right)}}\right)$$
Limit(tan(5*x)/sin(2*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \tan{\left(5 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(5 x \right)}}{\sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(5 x \right)}}{\frac{d}{d x} \sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5 \tan^{2}{\left(5 x \right)} + 5}{2 \cos{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5 \tan^{2}{\left(5 x \right)}}{2} + \frac{5}{2}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5 \tan^{2}{\left(5 x \right)}}{2} + \frac{5}{2}\right)$$
=
$$\frac{5}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
5/2
$$\frac{5}{2}$$
One‐sided limits [src]
     /tan(5*x)\
 lim |--------|
x->0+\sin(2*x)/
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(5 x \right)}}{\sin{\left(2 x \right)}}\right)$$
5/2
$$\frac{5}{2}$$
= 2.5
     /tan(5*x)\
 lim |--------|
x->0-\sin(2*x)/
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(5 x \right)}}{\sin{\left(2 x \right)}}\right)$$
5/2
$$\frac{5}{2}$$
= 2.5
= 2.5
Numerical answer [src]
2.5
2.5
The graph
Limit of the function tan(5*x)/sin(2*x)