We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{n \to \infty} n!^{2} = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} \left(2 n\right)! = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{n!^{2}}{\left(2 n\right)!}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} n!^{2}}{\frac{d}{d n} \left(2 n\right)!}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{n! \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{\Gamma\left(2 n + 1\right) \operatorname{polygamma}{\left(0,2 n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{n! \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{\Gamma\left(2 n + 1\right) \operatorname{polygamma}{\left(0,2 n + 1 \right)}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)