Mister Exam

Integral of -x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1      
  /      
 |       
 |  -x dx
 |       
/        
0        
01(x)dx\int\limits_{0}^{1} \left(- x\right)\, dx
Integral(-x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: x22- \frac{x^{2}}{2}

  2. Add the constant of integration:

    x22+constant- \frac{x^{2}}{2}+ \mathrm{constant}


The answer is:

x22+constant- \frac{x^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /             2
 |             x 
 | -x dx = C - --
 |             2 
/                
(x)dx=Cx22\int \left(- x\right)\, dx = C - \frac{x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
-1/2
12- \frac{1}{2}
=
=
-1/2
12- \frac{1}{2}
-1/2
Numerical answer [src]
-0.5
-0.5
The graph
Integral of -x dx

    Use the examples entering the upper and lower limits of integration.