Mister Exam

Other calculators:


x/sqrt(1+x^2)

Limit of the function x/sqrt(1+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /     x     \
 lim  |-----------|
x->-oo|   ________|
      |  /      2 |
      \\/  1 + x  /
$$\lim_{x \to -\infty}\left(\frac{x}{\sqrt{x^{2} + 1}}\right)$$
Limit(x/sqrt(1 + x^2), x, -oo)
Lopital's rule
We have indeterminateness of type
-oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to -\infty} x = -\infty$$
and limit for the denominator is
$$\lim_{x \to -\infty} \sqrt{x^{2} + 1} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to -\infty}\left(\frac{x}{\sqrt{x^{2} + 1}}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \sqrt{x^{2} + 1}}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{\sqrt{x^{2} + 1}}{x}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{\sqrt{x^{2} + 1}}{x}\right)$$
=
$$-1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
-1
$$-1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{x}{\sqrt{x^{2} + 1}}\right) = -1$$
$$\lim_{x \to \infty}\left(\frac{x}{\sqrt{x^{2} + 1}}\right) = 1$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{\sqrt{x^{2} + 1}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{\sqrt{x^{2} + 1}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{\sqrt{x^{2} + 1}}\right) = \frac{\sqrt{2}}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{\sqrt{x^{2} + 1}}\right) = \frac{\sqrt{2}}{2}$$
More at x→1 from the right
The graph
Limit of the function x/sqrt(1+x^2)