Mister Exam

Other calculators

Integral of xln(x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       / 2\   
 |  x*log\x / dx
 |              
/               
0               
01xlog(x2)dx\int\limits_{0}^{1} x \log{\left(x^{2} \right)}\, dx
Integral(x*log(x^2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x2)u = \log{\left(x^{2} \right)}.

      Then let du=2dxxdu = \frac{2 dx}{x} and substitute du2\frac{du}{2}:

      ueu4du\int \frac{u e^{u}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        ueu2du=ueudu2\int \frac{u e^{u}}{2}\, du = \frac{\int u e^{u}\, du}{2}

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: ueu2eu2\frac{u e^{u}}{2} - \frac{e^{u}}{2}

      Now substitute uu back in:

      x2log(x2)2x22\frac{x^{2} \log{\left(x^{2} \right)}}{2} - \frac{x^{2}}{2}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(x2)u{\left(x \right)} = \log{\left(x^{2} \right)} and let dv(x)=x\operatorname{dv}{\left(x \right)} = x.

      Then du(x)=2x\operatorname{du}{\left(x \right)} = \frac{2}{x}.

      To find v(x)v{\left(x \right)}:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      Now evaluate the sub-integral.

    2. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

  2. Now simplify:

    x2(log(x2)1)2\frac{x^{2} \left(\log{\left(x^{2} \right)} - 1\right)}{2}

  3. Add the constant of integration:

    x2(log(x2)1)2+constant\frac{x^{2} \left(\log{\left(x^{2} \right)} - 1\right)}{2}+ \mathrm{constant}


The answer is:

x2(log(x2)1)2+constant\frac{x^{2} \left(\log{\left(x^{2} \right)} - 1\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                     2    2    / 2\
 |      / 2\          x    x *log\x /
 | x*log\x / dx = C - -- + ----------
 |                    2        2     
/                                    
2(x2logx2x24)2\,\left({{x^2\,\log x}\over{2}}-{{x^2}\over{4}}\right)
The answer [src]
-1/2
12-{{1}\over{2}}
=
=
-1/2
12- \frac{1}{2}
Numerical answer [src]
-0.5
-0.5

    Use the examples entering the upper and lower limits of integration.