Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^2*e^(-x) Integral of x^2*e^(-x)
  • Integral of e^u Integral of e^u
  • Integral of dx/x^3 Integral of dx/x^3
  • Integral of -sinx Integral of -sinx
  • Identical expressions

  • (one)/(x(lnx^ two)^ four)
  • (1) divide by (x(lnx squared ) to the power of 4)
  • (one) divide by (x(lnx to the power of two) to the power of four)
  • (1)/(x(lnx2)4)
  • 1/xlnx24
  • (1)/(x(lnx²)⁴)
  • (1)/(x(lnx to the power of 2) to the power of 4)
  • 1/xlnx^2^4
  • (1) divide by (x(lnx^2)^4)
  • (1)/(x(lnx^2)^4)dx

Integral of (1)/(x(lnx^2)^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |        1        
 |  1*---------- dx
 |             4   
 |         2       
 |    x*log (x)    
 |                 
/                  
0                  
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \left(\log{\left(x \right)}^{2}\right)^{4}}\, dx$$
Integral(1/(x*(log(x)^2)^4), (x, 0, 1))
The answer (Indefinite) [src]
  /                               
 |                                
 |       1                   1    
 | 1*---------- dx = C - ---------
 |            4               7   
 |        2              7*log (x)
 |   x*log (x)                    
 |                                
/                                 
$$-{{1}\over{7\,\left(\log x\right)^7}}$$
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
6.8375647901266e+132
6.8375647901266e+132

    Use the examples entering the upper and lower limits of integration.