Integral of sqrtx(lnx^2) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫tx(log(x)2)2dx=t∫x(log(x)2)2dx
-
Don't know the steps in finding this integral.
But the integral is
2x2log(x)4−x2log(x)3+23x2log(x)2−23x2log(x)+43x2
So, the result is: t(2x2log(x)4−x2log(x)3+23x2log(x)2−23x2log(x)+43x2)
-
Now simplify:
4tx2⋅(2log(x)4−4log(x)3+6log(x)2−6log(x)+3)
-
Add the constant of integration:
4tx2⋅(2log(x)4−4log(x)3+6log(x)2−6log(x)+3)+constant
The answer is:
4tx2⋅(2log(x)4−4log(x)3+6log(x)2−6log(x)+3)+constant
The answer (Indefinite)
[src]
/
|
| 2 / 2 2 4 2 2 2 \
| 2 |3*x x *log (x) 2 3 3*x *log(x) 3*x *log (x)|
| t*x*log (x) dx = C + t*|---- + ---------- - x *log (x) - ----------- + ------------|
| \ 4 2 2 2 /
/
∫tx(log(x)2)2dx=C+t(2x2log(x)4−x2log(x)3+23x2log(x)2−23x2log(x)+43x2)
Use the examples entering the upper and lower limits of integration.