Mister Exam

Other calculators


x*exp(-x^2)

Integral of x*exp(-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |       2   
 |     -x    
 |  x*e    dx
 |           
/            
0            
01xex2dx\int\limits_{0}^{1} x e^{- x^{2}}\, dx
Integral(x*exp(-x^2), (x, 0, 1))
Detail solution
  1. Let u=x2u = - x^{2}.

    Then let du=2xdxdu = - 2 x dx and substitute du2- \frac{du}{2}:

    (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      False\text{False}

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      So, the result is: eu2- \frac{e^{u}}{2}

    Now substitute uu back in:

    ex22- \frac{e^{- x^{2}}}{2}

  2. Add the constant of integration:

    ex22+constant- \frac{e^{- x^{2}}}{2}+ \mathrm{constant}


The answer is:

ex22+constant- \frac{e^{- x^{2}}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                    2
 |      2           -x 
 |    -x           e   
 | x*e    dx = C - ----
 |                  2  
/                      
xex2dx=Cex22\int x e^{- x^{2}}\, dx = C - \frac{e^{- x^{2}}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
     -1
1   e  
- - ---
2    2 
1212e\frac{1}{2} - \frac{1}{2 e}
=
=
     -1
1   e  
- - ---
2    2 
1212e\frac{1}{2} - \frac{1}{2 e}
1/2 - exp(-1)/2
Numerical answer [src]
0.316060279414279
0.316060279414279
The graph
Integral of x*exp(-x^2) dx

    Use the examples entering the upper and lower limits of integration.