Integral of x*exp(-x^2) dx
The solution
Detail solution
-
Let u=−x2.
Then let du=−2xdx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−x2
-
Add the constant of integration:
−2e−x2+constant
The answer is:
−2e−x2+constant
The answer (Indefinite)
[src]
/
| 2
| 2 -x
| -x e
| x*e dx = C - ----
| 2
/
∫xe−x2dx=C−2e−x2
The graph
21−2e1
=
21−2e1
Use the examples entering the upper and lower limits of integration.