Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/(1+4x^2) Integral of 1/(1+4x^2)
  • Integral of 4*x*exp(x^2) Integral of 4*x*exp(x^2)
  • Integral of xln(1+x) Integral of xln(1+x)
  • Integral of sin^5 Integral of sin^5
  • Identical expressions

  • sqrt(x)*(lnx^ two)*x
  • square root of (x) multiply by (lnx squared ) multiply by x
  • square root of (x) multiply by (lnx to the power of two) multiply by x
  • √(x)*(lnx^2)*x
  • sqrt(x)*(lnx2)*x
  • sqrtx*lnx2*x
  • sqrt(x)*(lnx²)*x
  • sqrt(x)*(lnx to the power of 2)*x
  • sqrt(x)(lnx^2)x
  • sqrt(x)(lnx2)x
  • sqrtxlnx2x
  • sqrtxlnx^2x
  • sqrt(x)*(lnx^2)*xdx

Integral of sqrt(x)*(lnx^2)*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |    ___    2        
 |  \/ x *log (x)*x dx
 |                    
/                     
0                     
01xxlog(x)2dx\int\limits_{0}^{1} \sqrt{x} x \log{\left(x \right)}^{2}\, dx
Integral(sqrt(x)*log(x)^2*x, (x, 0, 1))
Detail solution
  1. Let u=log(x)u = \log{\left(x \right)}.

    Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

    u2e5u2du\int u^{2} e^{\frac{5 u}{2}}\, du

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(u)=u2u{\left(u \right)} = u^{2} and let dv(u)=e5u2\operatorname{dv}{\left(u \right)} = e^{\frac{5 u}{2}}.

      Then du(u)=2u\operatorname{du}{\left(u \right)} = 2 u.

      To find v(u)v{\left(u \right)}:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=5u2u = \frac{5 u}{2}.

          Then let du=5du2du = \frac{5 du}{2} and substitute 2du5\frac{2 du}{5}:

          4eu25du\int \frac{4 e^{u}}{25}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            2eu5du=2eudu5\int \frac{2 e^{u}}{5}\, du = \frac{2 \int e^{u}\, du}{5}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: 2eu5\frac{2 e^{u}}{5}

          Now substitute uu back in:

          2e5u25\frac{2 e^{\frac{5 u}{2}}}{5}

        Method #2

        1. Let u=e5u2u = e^{\frac{5 u}{2}}.

          Then let du=5e5u2du2du = \frac{5 e^{\frac{5 u}{2}} du}{2} and substitute 2du5\frac{2 du}{5}:

          425du\int \frac{4}{25}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            25du=21du5\int \frac{2}{5}\, du = \frac{2 \int 1\, du}{5}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: 2u5\frac{2 u}{5}

          Now substitute uu back in:

          2e5u25\frac{2 e^{\frac{5 u}{2}}}{5}

      Now evaluate the sub-integral.

    2. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(u)=4u5u{\left(u \right)} = \frac{4 u}{5} and let dv(u)=e5u2\operatorname{dv}{\left(u \right)} = e^{\frac{5 u}{2}}.

      Then du(u)=45\operatorname{du}{\left(u \right)} = \frac{4}{5}.

      To find v(u)v{\left(u \right)}:

      1. Let u=5u2u = \frac{5 u}{2}.

        Then let du=5du2du = \frac{5 du}{2} and substitute 2du5\frac{2 du}{5}:

        4eu25du\int \frac{4 e^{u}}{25}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          2eu5du=2eudu5\int \frac{2 e^{u}}{5}\, du = \frac{2 \int e^{u}\, du}{5}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: 2eu5\frac{2 e^{u}}{5}

        Now substitute uu back in:

        2e5u25\frac{2 e^{\frac{5 u}{2}}}{5}

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      8e5u225du=8e5u2du25\int \frac{8 e^{\frac{5 u}{2}}}{25}\, du = \frac{8 \int e^{\frac{5 u}{2}}\, du}{25}

      1. Let u=5u2u = \frac{5 u}{2}.

        Then let du=5du2du = \frac{5 du}{2} and substitute 2du5\frac{2 du}{5}:

        4eu25du\int \frac{4 e^{u}}{25}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          2eu5du=2eudu5\int \frac{2 e^{u}}{5}\, du = \frac{2 \int e^{u}\, du}{5}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: 2eu5\frac{2 e^{u}}{5}

        Now substitute uu back in:

        2e5u25\frac{2 e^{\frac{5 u}{2}}}{5}

      So, the result is: 16e5u2125\frac{16 e^{\frac{5 u}{2}}}{125}

    Now substitute uu back in:

    2x52log(x)258x52log(x)25+16x52125\frac{2 x^{\frac{5}{2}} \log{\left(x \right)}^{2}}{5} - \frac{8 x^{\frac{5}{2}} \log{\left(x \right)}}{25} + \frac{16 x^{\frac{5}{2}}}{125}

  2. Now simplify:

    2x52(25log(x)220log(x)+8)125\frac{2 x^{\frac{5}{2}} \cdot \left(25 \log{\left(x \right)}^{2} - 20 \log{\left(x \right)} + 8\right)}{125}

  3. Add the constant of integration:

    2x52(25log(x)220log(x)+8)125+constant\frac{2 x^{\frac{5}{2}} \cdot \left(25 \log{\left(x \right)}^{2} - 20 \log{\left(x \right)} + 8\right)}{125}+ \mathrm{constant}


The answer is:

2x52(25log(x)220log(x)+8)125+constant\frac{2 x^{\frac{5}{2}} \cdot \left(25 \log{\left(x \right)}^{2} - 20 \log{\left(x \right)} + 8\right)}{125}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                 
 |                              5/2      5/2             5/2    2   
 |   ___    2               16*x      8*x   *log(x)   2*x   *log (x)
 | \/ x *log (x)*x dx = C + ------- - ------------- + --------------
 |                            125           25              5       
/                                                                   
8x52(25(logx)245logx+2)125{{8\,x^{{{5}\over{2}}}\,\left({{25\,\left(\log x\right)^2}\over{4}} -5\,\log x+2\right)}\over{125}}
The answer [src]
 16
---
125
16125{{16}\over{125}}
=
=
 16
---
125
16125\frac{16}{125}
Numerical answer [src]
0.128
0.128

    Use the examples entering the upper and lower limits of integration.