Integral of sqrt(x)*(lnx^2)*x dx
The solution
Detail solution
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2e25udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e25u.
Then du(u)=2u.
To find v(u):
-
There are multiple ways to do this integral.
Method #1
-
Let u=25u.
Then let du=25du and substitute 52du:
∫254eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫52eudu=52∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 52eu
Now substitute u back in:
52e25u
Method #2
-
Let u=e25u.
Then let du=25e25udu and substitute 52du:
∫254du
-
The integral of a constant times a function is the constant times the integral of the function:
∫52du=52∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 52u
Now substitute u back in:
52e25u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=54u and let dv(u)=e25u.
Then du(u)=54.
To find v(u):
-
Let u=25u.
Then let du=25du and substitute 52du:
∫254eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫52eudu=52∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 52eu
Now substitute u back in:
52e25u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫258e25udu=258∫e25udu
-
Let u=25u.
Then let du=25du and substitute 52du:
∫254eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫52eudu=52∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 52eu
Now substitute u back in:
52e25u
So, the result is: 12516e25u
Now substitute u back in:
52x25log(x)2−258x25log(x)+12516x25
-
Now simplify:
1252x25⋅(25log(x)2−20log(x)+8)
-
Add the constant of integration:
1252x25⋅(25log(x)2−20log(x)+8)+constant
The answer is:
1252x25⋅(25log(x)2−20log(x)+8)+constant
The answer (Indefinite)
[src]
/
| 5/2 5/2 5/2 2
| ___ 2 16*x 8*x *log(x) 2*x *log (x)
| \/ x *log (x)*x dx = C + ------- - ------------- + --------------
| 125 25 5
/
1258x25(425(logx)2−5logx+2)
12516
=
12516
Use the examples entering the upper and lower limits of integration.