Mister Exam

Integral of x-2/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  E           
  /           
 |            
 |  /    2\   
 |  |x - -| dx
 |  \    x/   
 |            
/             
1             
1e(x2x)dx\int\limits_{1}^{e} \left(x - \frac{2}{x}\right)\, dx
Integral(x - 2/x, (x, 1, E))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2x)dx=21xdx\int \left(- \frac{2}{x}\right)\, dx = - 2 \int \frac{1}{x}\, dx

      1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

      So, the result is: 2log(x)- 2 \log{\left(x \right)}

    The result is: x222log(x)\frac{x^{2}}{2} - 2 \log{\left(x \right)}

  2. Add the constant of integration:

    x222log(x)+constant\frac{x^{2}}{2} - 2 \log{\left(x \right)}+ \mathrm{constant}


The answer is:

x222log(x)+constant\frac{x^{2}}{2} - 2 \log{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                   2           
 | /    2\          x            
 | |x - -| dx = C + -- - 2*log(x)
 | \    x/          2            
 |                               
/                                
(x2x)dx=C+x222log(x)\int \left(x - \frac{2}{x}\right)\, dx = C + \frac{x^{2}}{2} - 2 \log{\left(x \right)}
The graph
1.01.21.41.61.82.02.22.42.65-5
The answer [src]
       2
  5   e 
- - + --
  2   2 
52+e22- \frac{5}{2} + \frac{e^{2}}{2}
=
=
       2
  5   e 
- - + --
  2   2 
52+e22- \frac{5}{2} + \frac{e^{2}}{2}
-5/2 + exp(2)/2
Numerical answer [src]
1.19452804946532
1.19452804946532
The graph
Integral of x-2/x dx

    Use the examples entering the upper and lower limits of integration.