Mister Exam

Other calculators


x*e^(x*(-2))*dx

Integral of x*e^(x*(-2))*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     x*(-2)   
 |  x*E       dx
 |              
/               
0               
$$\int\limits_{0}^{1} e^{\left(-2\right) x} x\, dx$$
Integral(x*E^(x*(-2)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                     
 |                                x*(-2)
 |    x*(-2)          (-1 - 2*x)*e      
 | x*E       dx = C + ------------------
 |                            4         
/                                       
$$\int e^{\left(-2\right) x} x\, dx = C + \frac{\left(- 2 x - 1\right) e^{\left(-2\right) x}}{4}$$
The graph
The answer [src]
       -2
1   3*e  
- - -----
4     4  
$$\frac{1}{4} - \frac{3}{4 e^{2}}$$
=
=
       -2
1   3*e  
- - -----
4     4  
$$\frac{1}{4} - \frac{3}{4 e^{2}}$$
1/4 - 3*exp(-2)/4
Numerical answer [src]
0.14849853757254
0.14849853757254
The graph
Integral of x*e^(x*(-2))*dx dx

    Use the examples entering the upper and lower limits of integration.