Mister Exam

Other calculators:


x-2/x

Limit of the function x-2/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    2\
 lim |x - -|
x->4+\    x/
limx4+(x2x)\lim_{x \to 4^+}\left(x - \frac{2}{x}\right)
Limit(x - 2/x, x, 4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
80246-8-6-4-2-5050
Other limits x→0, -oo, +oo, 1
limx4(x2x)=72\lim_{x \to 4^-}\left(x - \frac{2}{x}\right) = \frac{7}{2}
More at x→4 from the left
limx4+(x2x)=72\lim_{x \to 4^+}\left(x - \frac{2}{x}\right) = \frac{7}{2}
limx(x2x)=\lim_{x \to \infty}\left(x - \frac{2}{x}\right) = \infty
More at x→oo
limx0(x2x)=\lim_{x \to 0^-}\left(x - \frac{2}{x}\right) = \infty
More at x→0 from the left
limx0+(x2x)=\lim_{x \to 0^+}\left(x - \frac{2}{x}\right) = -\infty
More at x→0 from the right
limx1(x2x)=1\lim_{x \to 1^-}\left(x - \frac{2}{x}\right) = -1
More at x→1 from the left
limx1+(x2x)=1\lim_{x \to 1^+}\left(x - \frac{2}{x}\right) = -1
More at x→1 from the right
limx(x2x)=\lim_{x \to -\infty}\left(x - \frac{2}{x}\right) = -\infty
More at x→-oo
Rapid solution [src]
7/2
72\frac{7}{2}
One‐sided limits [src]
     /    2\
 lim |x - -|
x->4+\    x/
limx4+(x2x)\lim_{x \to 4^+}\left(x - \frac{2}{x}\right)
7/2
72\frac{7}{2}
= 3.5
     /    2\
 lim |x - -|
x->4-\    x/
limx4(x2x)\lim_{x \to 4^-}\left(x - \frac{2}{x}\right)
7/2
72\frac{7}{2}
= 3.5
= 3.5
Numerical answer [src]
3.5
3.5
The graph
Limit of the function x-2/x