Mister Exam

Other calculators


(x-1)/(x^2+1)

Integral of (x-1)/(x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  x - 1    
 |  ------ dx
 |   2       
 |  x  + 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x - 1}{x^{2} + 1}\, dx$$
Integral((x - 1)/(x^2 + 1), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 | x - 1    
 | ------ dx
 |  2       
 | x  + 1   
 |          
/           
Rewrite the integrand
         /    2*x     \            
         |------------|     /-1 \  
         | 2          |     |---|  
x - 1    \x  + 0*x + 1/     \ 1 /  
------ = -------------- + ---------
 2             2              2    
x  + 1                    (-x)  + 1
or
  /           
 |            
 | x - 1      
 | ------ dx  
 |  2        =
 | x  + 1     
 |            
/             
  
  /                                 
 |                                  
 |     2*x                          
 | ------------ dx                  
 |  2                               
 | x  + 0*x + 1        /            
 |                    |             
/                     |     1       
------------------ -  | --------- dx
        2             |     2       
                      | (-x)  + 1   
                      |             
                     /              
In the integral
  /               
 |                
 |     2*x        
 | ------------ dx
 |  2             
 | x  + 0*x + 1   
 |                
/                 
------------------
        2         
do replacement
     2
u = x 
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 1 + u                
 |                      
/             log(1 + u)
----------- = ----------
     2            2     
do backward replacement
  /                             
 |                              
 |     2*x                      
 | ------------ dx              
 |  2                           
 | x  + 0*x + 1                 
 |                      /     2\
/                    log\1 + x /
------------------ = -----------
        2                 2     
In the integral
   /            
  |             
  |     1       
- | --------- dx
  |     2       
  | (-x)  + 1   
  |             
 /              
do replacement
v = -x
then
the integral =
   /                    
  |                     
  |   1                 
- | ------ dv = -atan(v)
  |      2              
  | 1 + v               
  |                     
 /                      
do backward replacement
   /                       
  |                        
  |     1                  
- | --------- dx = -atan(x)
  |     2                  
  | (-x)  + 1              
  |                        
 /                         
Solution is:
       /     2\          
    log\1 + x /          
C + ----------- - atan(x)
         2               
The answer (Indefinite) [src]
  /                                     
 |                    /     2\          
 | x - 1           log\1 + x /          
 | ------ dx = C + ----------- - atan(x)
 |  2                   2               
 | x  + 1                               
 |                                      
/                                       
$$\int \frac{x - 1}{x^{2} + 1}\, dx = C + \frac{\log{\left(x^{2} + 1 \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
log(2)   pi
------ - --
  2      4 
$$- \frac{\pi}{4} + \frac{\log{\left(2 \right)}}{2}$$
=
=
log(2)   pi
------ - --
  2      4 
$$- \frac{\pi}{4} + \frac{\log{\left(2 \right)}}{2}$$
log(2)/2 - pi/4
Numerical answer [src]
-0.438824573117476
-0.438824573117476
The graph
Integral of (x-1)/(x^2+1) dx

    Use the examples entering the upper and lower limits of integration.