1 / | | x - 1 | ------ dx | 2 | x + 1 | / 0
Integral((x - 1)/(x^2 + 1), (x, 0, 1))
/ | | x - 1 | ------ dx | 2 | x + 1 | /
/ 2*x \ |------------| /-1 \ | 2 | |---| x - 1 \x + 0*x + 1/ \ 1 / ------ = -------------- + --------- 2 2 2 x + 1 (-x) + 1
/ | | x - 1 | ------ dx | 2 = | x + 1 | /
/ | | 2*x | ------------ dx | 2 | x + 0*x + 1 / | | / | 1 ------------------ - | --------- dx 2 | 2 | (-x) + 1 | /
/ | | 2*x | ------------ dx | 2 | x + 0*x + 1 | / ------------------ 2
2 u = x
/ | | 1 | ----- du | 1 + u | / log(1 + u) ----------- = ---------- 2 2
/ | | 2*x | ------------ dx | 2 | x + 0*x + 1 | / 2\ / log\1 + x / ------------------ = ----------- 2 2
/ | | 1 - | --------- dx | 2 | (-x) + 1 | /
v = -x
/ | | 1 - | ------ dv = -atan(v) | 2 | 1 + v | /
/ | | 1 - | --------- dx = -atan(x) | 2 | (-x) + 1 | /
/ 2\ log\1 + x / C + ----------- - atan(x) 2
/ | / 2\ | x - 1 log\1 + x / | ------ dx = C + ----------- - atan(x) | 2 2 | x + 1 | /
log(2) pi ------ - -- 2 4
=
log(2) pi ------ - -- 2 4
log(2)/2 - pi/4
Use the examples entering the upper and lower limits of integration.