Integral of (3x-1)/(x^2+10x+6) dx
The solution
The answer (Indefinite)
[src]
/
| / 2 \ ____ / / ____\ / ____\\
| 3*x - 1 3*log\6 + x + 10*x/ 8*\/ 19 *\- log\5 + x + \/ 19 / + log\5 + x - \/ 19 //
| ------------- dx = C + -------------------- - ------------------------------------------------------
| 2 2 19
| x + 10*x + 6
|
/
23log(x2+10x+6)−198log(2x+219+102x−219+10)
The graph
/ ____\ / ____\ / ____\ / ____\
|3 8*\/ 19 | / ____\ |3 8*\/ 19 | / ____\ |3 8*\/ 19 | / ____\ |3 8*\/ 19 | / ____\
|- - --------|*log\6 - \/ 19 / + |- + --------|*log\6 + \/ 19 / - |- - --------|*log\5 - \/ 19 / - |- + --------|*log\5 + \/ 19 /
\2 19 / \2 19 / \2 19 / \2 19 /
−198log(−171219−55)+198log(−3519−22)+23log17−23log6
=
/ ____\ / ____\ / ____\ / ____\
|3 8*\/ 19 | / ____\ |3 8*\/ 19 | / ____\ |3 8*\/ 19 | / ____\ |3 8*\/ 19 | / ____\
|- - --------|*log\6 - \/ 19 / + |- + --------|*log\6 + \/ 19 / - |- - --------|*log\5 - \/ 19 / - |- + --------|*log\5 + \/ 19 /
\2 19 / \2 19 / \2 19 / \2 19 /
−(23+19819)log(19+5)+(−19819+23)log(−19+6)−(−19819+23)log(−19+5)+(23+19819)log(19+6)
Use the examples entering the upper and lower limits of integration.