Mister Exam

Other calculators


x/(1-cos2x)

Integral of x/(1-cos2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       x         
 |  ------------ dx
 |  1 - cos(2*x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x}{1 - \cos{\left(2 x \right)}}\, dx$$
Integral(x/(1 - cos(2*x)), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                               
 |                                        /       2   \           
 |      x                log(tan(x))   log\1 + tan (x)/      x    
 | ------------ dx = C + ----------- - ---------------- - --------
 | 1 - cos(2*x)               2               4           2*tan(x)
 |                                                                
/                                                                 
$$\int \frac{x}{1 - \cos{\left(2 x \right)}}\, dx = C - \frac{x}{2 \tan{\left(x \right)}} - \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4} + \frac{\log{\left(\tan{\left(x \right)} \right)}}{2}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
The graph
Integral of x/(1-cos2x) dx

    Use the examples entering the upper and lower limits of integration.