x ------------ 1 - cos(2*x)
x/(1 - cos(2*x))
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 2*x*sin(2*x) ------------ - --------------- 1 - cos(2*x) 2 (1 - cos(2*x))
/ / 2 \ \ | | 2*sin (2*x) | | -4*|x*|------------- + cos(2*x)| + sin(2*x)| \ \-1 + cos(2*x) / / -------------------------------------------- 2 (-1 + cos(2*x))
/ 2 / 2 \ \ | 6*sin (2*x) | 6*cos(2*x) 6*sin (2*x) | | -4*|3*cos(2*x) + ------------- + 2*x*|-1 + ------------- + ----------------|*sin(2*x)| | -1 + cos(2*x) | -1 + cos(2*x) 2| | \ \ (-1 + cos(2*x)) / / -------------------------------------------------------------------------------------- 2 (-1 + cos(2*x))