Mister Exam

Derivative of x/(1-cos2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x      
------------
1 - cos(2*x)
$$\frac{x}{1 - \cos{\left(2 x \right)}}$$
x/(1 - cos(2*x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     1           2*x*sin(2*x) 
------------ - ---------------
1 - cos(2*x)                 2
               (1 - cos(2*x)) 
$$- \frac{2 x \sin{\left(2 x \right)}}{\left(1 - \cos{\left(2 x \right)}\right)^{2}} + \frac{1}{1 - \cos{\left(2 x \right)}}$$
The second derivative [src]
   /  /      2                 \           \
   |  | 2*sin (2*x)            |           |
-4*|x*|------------- + cos(2*x)| + sin(2*x)|
   \  \-1 + cos(2*x)           /           /
--------------------------------------------
                             2              
              (-1 + cos(2*x))               
$$- \frac{4 \left(x \left(\cos{\left(2 x \right)} + \frac{2 \sin^{2}{\left(2 x \right)}}{\cos{\left(2 x \right)} - 1}\right) + \sin{\left(2 x \right)}\right)}{\left(\cos{\left(2 x \right)} - 1\right)^{2}}$$
The third derivative [src]
   /                   2             /                            2        \         \
   |              6*sin (2*x)        |       6*cos(2*x)      6*sin (2*x)   |         |
-4*|3*cos(2*x) + ------------- + 2*x*|-1 + ------------- + ----------------|*sin(2*x)|
   |             -1 + cos(2*x)       |     -1 + cos(2*x)                  2|         |
   \                                 \                     (-1 + cos(2*x)) /         /
--------------------------------------------------------------------------------------
                                                  2                                   
                                   (-1 + cos(2*x))                                    
$$- \frac{4 \left(2 x \left(-1 + \frac{6 \cos{\left(2 x \right)}}{\cos{\left(2 x \right)} - 1} + \frac{6 \sin^{2}{\left(2 x \right)}}{\left(\cos{\left(2 x \right)} - 1\right)^{2}}\right) \sin{\left(2 x \right)} + 3 \cos{\left(2 x \right)} + \frac{6 \sin^{2}{\left(2 x \right)}}{\cos{\left(2 x \right)} - 1}\right)}{\left(\cos{\left(2 x \right)} - 1\right)^{2}}$$
The graph
Derivative of x/(1-cos2x)