Mister Exam

Other calculators


e^(2*x+1)

Integral of e^(2*x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   2*x + 1   
 |  E        dx
 |             
/              
0              
01e2x+1dx\int\limits_{0}^{1} e^{2 x + 1}\, dx
Integral(E^(2*x + 1), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2x+1u = 2 x + 1.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      eu2du\int \frac{e^{u}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2\frac{e^{u}}{2}

      Now substitute uu back in:

      e2x+12\frac{e^{2 x + 1}}{2}

    Method #2

    1. Rewrite the integrand:

      e2x+1=ee2xe^{2 x + 1} = e e^{2 x}

    2. The integral of a constant times a function is the constant times the integral of the function:

      ee2xdx=ee2xdx\int e e^{2 x}\, dx = e \int e^{2 x}\, dx

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu2du\int \frac{e^{u}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      So, the result is: ee2x2\frac{e e^{2 x}}{2}

    Method #3

    1. Rewrite the integrand:

      e2x+1=ee2xe^{2 x + 1} = e e^{2 x}

    2. The integral of a constant times a function is the constant times the integral of the function:

      ee2xdx=ee2xdx\int e e^{2 x}\, dx = e \int e^{2 x}\, dx

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu2du\int \frac{e^{u}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      So, the result is: ee2x2\frac{e e^{2 x}}{2}

  2. Now simplify:

    e2x+12\frac{e^{2 x + 1}}{2}

  3. Add the constant of integration:

    e2x+12+constant\frac{e^{2 x + 1}}{2}+ \mathrm{constant}


The answer is:

e2x+12+constant\frac{e^{2 x + 1}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                    2*x + 1
 |  2*x + 1          e       
 | E        dx = C + --------
 |                      2    
/                            
e2x+1dx=C+e2x+12\int e^{2 x + 1}\, dx = C + \frac{e^{2 x + 1}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90040
The answer [src]
 3    
e    E
-- - -
2    2
e2+e32- \frac{e}{2} + \frac{e^{3}}{2}
=
=
 3    
e    E
-- - -
2    2
e2+e32- \frac{e}{2} + \frac{e^{3}}{2}
exp(3)/2 - E/2
Numerical answer [src]
8.68362754736431
8.68362754736431
The graph
Integral of e^(2*x+1) dx

    Use the examples entering the upper and lower limits of integration.