Mister Exam

Other calculators

Integral of (sqrt(cot(7x)))/(1-cos(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    __________   
 |  \/ cot(7*x)    
 |  ------------ dx
 |  1 - cos(2*x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(7 x \right)}}}{1 - \cos{\left(2 x \right)}}\, dx$$
Integral(sqrt(cot(7*x))/(1 - cos(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                        /                
 |                        |                 
 |   __________           |    __________   
 | \/ cot(7*x)            |  \/ cot(7*x)    
 | ------------ dx = C -  | ------------- dx
 | 1 - cos(2*x)           | -1 + cos(2*x)   
 |                        |                 
/                        /                  
$$\int \frac{\sqrt{\cot{\left(7 x \right)}}}{1 - \cos{\left(2 x \right)}}\, dx = C - \int \frac{\sqrt{\cot{\left(7 x \right)}}}{\cos{\left(2 x \right)} - 1}\, dx$$

    Use the examples entering the upper and lower limits of integration.