Mister Exam

Other calculators


sin(x)/(1-cos^2(x))

Integral of sin(x)/(1-cos^2(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     sin(x)     
 |  ----------- dx
 |         2      
 |  1 - cos (x)   
 |                
/                 
0                 
01sin(x)1cos2(x)dx\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx
Integral(sin(x)/(1 - cos(x)^2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin(x)1cos2(x)=sin(x)cos2(x)1\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} = - \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} - 1}

  2. The integral of a constant times a function is the constant times the integral of the function:

    (sin(x)cos2(x)1)dx=sin(x)cos2(x)1dx\int \left(- \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} - 1}\right)\, dx = - \int \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} - 1}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      log(cos(x)1)2+log(cos(x)+1)2- \frac{\log{\left(\cos{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\cos{\left(x \right)} + 1 \right)}}{2}

    So, the result is: log(cos(x)1)2log(cos(x)+1)2\frac{\log{\left(\cos{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\cos{\left(x \right)} + 1 \right)}}{2}

  3. Add the constant of integration:

    log(cos(x)1)2log(cos(x)+1)2+constant\frac{\log{\left(\cos{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\cos{\left(x \right)} + 1 \right)}}{2}+ \mathrm{constant}


The answer is:

log(cos(x)1)2log(cos(x)+1)2+constant\frac{\log{\left(\cos{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\cos{\left(x \right)} + 1 \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                                        
 |    sin(x)            log(-1 + cos(x))   log(1 + cos(x))
 | ----------- dx = C + ---------------- - ---------------
 |        2                    2                  2       
 | 1 - cos (x)                                            
 |                                                        
/                                                         
sin(x)1cos2(x)dx=C+log(cos(x)1)2log(cos(x)+1)2\int \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx = C + \frac{\log{\left(\cos{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\cos{\left(x \right)} + 1 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010000
The answer [src]
     pi*I
oo + ----
      2  
+iπ2\infty + \frac{i \pi}{2}
=
=
     pi*I
oo + ----
      2  
+iπ2\infty + \frac{i \pi}{2}
oo + pi*i/2
The graph
Integral of sin(x)/(1-cos^2(x)) dx

    Use the examples entering the upper and lower limits of integration.