Integral of xcosnx dx
The solution
The answer (Indefinite)
[src]
// 2 \
|| x |
|| -- for n = 0|
|| 2 |
/ || | // x for n = 0\
| ||/-cos(n*x) | || |
| x*cos(n*x) dx = C - |<|---------- for n != 0 | + x*|
n2nxsin(nx)+cos(nx)
/ 1 sin(n) cos(n)
|- -- + ------ + ------ for And(n > -oo, n < oo, n != 0)
| 2 n 2
< n n
|
| 1/2 otherwise
\
n2nsinn+cosn−n21
=
/ 1 sin(n) cos(n)
|- -- + ------ + ------ for And(n > -oo, n < oo, n != 0)
| 2 n 2
< n n
|
| 1/2 otherwise
\
{nsin(n)+n2cos(n)−n2121forn>−∞∧n<∞∧n=0otherwise
Use the examples entering the upper and lower limits of integration.