Mister Exam

Other calculators

Integral of sqrt(2+2sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |    ______________   
 |  \/ 2 + 2*sin(x)  dx
 |                     
/                      
0                      
012sin(x)+2dx\int\limits_{0}^{1} \sqrt{2 \sin{\left(x \right)} + 2}\, dx
Detail solution
  1. Rewrite the integrand:

    2sin(x)+2=2sin(x)+1\sqrt{2 \sin{\left(x \right)} + 2} = \sqrt{2} \sqrt{\sin{\left(x \right)} + 1}

  2. The integral of a constant times a function is the constant times the integral of the function:

    2sin(x)+1dx=2sin(x)+1dx\int \sqrt{2} \sqrt{\sin{\left(x \right)} + 1}\, dx = \sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      sin(x)+1dx\int \sqrt{\sin{\left(x \right)} + 1}\, dx

    So, the result is: 2sin(x)+1dx\sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx

  3. Add the constant of integration:

    2sin(x)+1dx+constant\sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx+ \mathrm{constant}


The answer is:

2sin(x)+1dx+constant\sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  /                 
 |                                  |                  
 |   ______________            ___  |   ____________   
 | \/ 2 + 2*sin(x)  dx = C + \/ 2 * | \/ 1 + sin(x)  dx
 |                                  |                  
/                                  /                   
2sinx+2  dx\int {\sqrt{2\,\sin x+2}}{\;dx}
The answer [src]
        1                  
        /                  
       |                   
  ___  |    ____________   
\/ 2 * |  \/ 1 + sin(x)  dx
       |                   
      /                    
      0                    
012sinx+2  dx\int_{0}^{1}{\sqrt{2\,\sin x+2}\;dx}
=
=
        1                  
        /                  
       |                   
  ___  |    ____________   
\/ 2 * |  \/ 1 + sin(x)  dx
       |                   
      /                    
      0                    
201sin(x)+1dx\sqrt{2} \int\limits_{0}^{1} \sqrt{\sin{\left(x \right)} + 1}\, dx
Numerical answer [src]
1.70226900017539
1.70226900017539

    Use the examples entering the upper and lower limits of integration.