pi / | | 2*x | E *cos(n*x) dx | / -pi
Integral(E^(2*x)*cos(n*x), (x, -pi, pi))
/ | 2*x 2*x | 2*x 2*cos(n*x)*e n*e *sin(n*x) | E *cos(n*x) dx = C + --------------- + --------------- | 2 2 / 4 + n 4 + n
-2*pi 2*pi -2*pi 2*pi 2*cos(pi*n)*e 2*cos(pi*n)*e n*e *sin(pi*n) n*e *sin(pi*n) - ------------------ + ----------------- + ------------------ + ----------------- 2 2 2 2 4 + n 4 + n 4 + n 4 + n
=
-2*pi 2*pi -2*pi 2*pi 2*cos(pi*n)*e 2*cos(pi*n)*e n*e *sin(pi*n) n*e *sin(pi*n) - ------------------ + ----------------- + ------------------ + ----------------- 2 2 2 2 4 + n 4 + n 4 + n 4 + n
-2*cos(pi*n)*exp(-2*pi)/(4 + n^2) + 2*cos(pi*n)*exp(2*pi)/(4 + n^2) + n*exp(-2*pi)*sin(pi*n)/(4 + n^2) + n*exp(2*pi)*sin(pi*n)/(4 + n^2)
Use the examples entering the upper and lower limits of integration.