Mister Exam

Other calculators

Integral of e^(2x)*cos(nx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                 
  /                 
 |                  
 |   2*x            
 |  E   *cos(n*x) dx
 |                  
/                   
-pi                 
$$\int\limits_{- \pi}^{\pi} e^{2 x} \cos{\left(n x \right)}\, dx$$
Integral(E^(2*x)*cos(n*x), (x, -pi, pi))
The answer (Indefinite) [src]
  /                                                        
 |                                    2*x      2*x         
 |  2*x                   2*cos(n*x)*e      n*e   *sin(n*x)
 | E   *cos(n*x) dx = C + --------------- + ---------------
 |                                  2                 2    
/                              4 + n             4 + n     
$$\int e^{2 x} \cos{\left(n x \right)}\, dx = C + \frac{n e^{2 x} \sin{\left(n x \right)}}{n^{2} + 4} + \frac{2 e^{2 x} \cos{\left(n x \right)}}{n^{2} + 4}$$
The answer [src]
               -2*pi                2*pi      -2*pi                2*pi          
  2*cos(pi*n)*e        2*cos(pi*n)*e       n*e     *sin(pi*n)   n*e    *sin(pi*n)
- ------------------ + ----------------- + ------------------ + -----------------
             2                    2                   2                    2     
        4 + n                4 + n               4 + n                4 + n      
$$\frac{n \sin{\left(\pi n \right)}}{\left(n^{2} + 4\right) e^{2 \pi}} + \frac{n e^{2 \pi} \sin{\left(\pi n \right)}}{n^{2} + 4} - \frac{2 \cos{\left(\pi n \right)}}{\left(n^{2} + 4\right) e^{2 \pi}} + \frac{2 e^{2 \pi} \cos{\left(\pi n \right)}}{n^{2} + 4}$$
=
=
               -2*pi                2*pi      -2*pi                2*pi          
  2*cos(pi*n)*e        2*cos(pi*n)*e       n*e     *sin(pi*n)   n*e    *sin(pi*n)
- ------------------ + ----------------- + ------------------ + -----------------
             2                    2                   2                    2     
        4 + n                4 + n               4 + n                4 + n      
$$\frac{n \sin{\left(\pi n \right)}}{\left(n^{2} + 4\right) e^{2 \pi}} + \frac{n e^{2 \pi} \sin{\left(\pi n \right)}}{n^{2} + 4} - \frac{2 \cos{\left(\pi n \right)}}{\left(n^{2} + 4\right) e^{2 \pi}} + \frac{2 e^{2 \pi} \cos{\left(\pi n \right)}}{n^{2} + 4}$$
-2*cos(pi*n)*exp(-2*pi)/(4 + n^2) + 2*cos(pi*n)*exp(2*pi)/(4 + n^2) + n*exp(-2*pi)*sin(pi*n)/(4 + n^2) + n*exp(2*pi)*sin(pi*n)/(4 + n^2)

    Use the examples entering the upper and lower limits of integration.