Mister Exam

Integral of sin(5x)cos(2x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  sin(5*x)*cos(2*x)*1 dx
 |                        
/                         
0                         
01sin(5x)cos(2x)1dx\int\limits_{0}^{1} \sin{\left(5 x \right)} \cos{\left(2 x \right)} 1\, dx
Integral(sin(5*x)*cos(2*x)*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin(5x)cos(2x)1=32sin5(x)cos2(x)16sin5(x)40sin3(x)cos2(x)+20sin3(x)+10sin(x)cos2(x)5sin(x)\sin{\left(5 x \right)} \cos{\left(2 x \right)} 1 = 32 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} - 16 \sin^{5}{\left(x \right)} - 40 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} + 20 \sin^{3}{\left(x \right)} + 10 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - 5 \sin{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      32sin5(x)cos2(x)dx=32sin5(x)cos2(x)dx\int 32 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 32 \int \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos2(x)=(1cos2(x))2sin(x)cos2(x)\sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

          (u6+2u4u2)du\int \left(- u^{6} + 2 u^{4} - u^{2}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: u77- \frac{u^{7}}{7}

            1. The integral of a constant times a function is the constant times the integral of the function:

              2u4du=2u4du\int 2 u^{4}\, du = 2 \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: 2u55\frac{2 u^{5}}{5}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            The result is: u77+2u55u33- \frac{u^{7}}{7} + \frac{2 u^{5}}{5} - \frac{u^{3}}{3}

          Now substitute uu back in:

          cos7(x)7+2cos5(x)5cos3(x)3- \frac{\cos^{7}{\left(x \right)}}{7} + \frac{2 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

        Method #2

        1. Rewrite the integrand:

          (1cos2(x))2sin(x)cos2(x)=sin(x)cos6(x)2sin(x)cos4(x)+sin(x)cos2(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)} = \sin{\left(x \right)} \cos^{6}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{4}{\left(x \right)} + \sin{\left(x \right)} \cos^{2}{\left(x \right)}

        2. Integrate term-by-term:

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u6du\int u^{6}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: u77- \frac{u^{7}}{7}

            Now substitute uu back in:

            cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2sin(x)cos4(x))dx=2sin(x)cos4(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u4du\int u^{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                So, the result is: u55- \frac{u^{5}}{5}

              Now substitute uu back in:

              cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

            So, the result is: 2cos5(x)5\frac{2 \cos^{5}{\left(x \right)}}{5}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u2du\int u^{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          The result is: cos7(x)7+2cos5(x)5cos3(x)3- \frac{\cos^{7}{\left(x \right)}}{7} + \frac{2 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

        Method #3

        1. Rewrite the integrand:

          (1cos2(x))2sin(x)cos2(x)=sin(x)cos6(x)2sin(x)cos4(x)+sin(x)cos2(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)} = \sin{\left(x \right)} \cos^{6}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{4}{\left(x \right)} + \sin{\left(x \right)} \cos^{2}{\left(x \right)}

        2. Integrate term-by-term:

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u6du\int u^{6}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: u77- \frac{u^{7}}{7}

            Now substitute uu back in:

            cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2sin(x)cos4(x))dx=2sin(x)cos4(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u4du\int u^{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                So, the result is: u55- \frac{u^{5}}{5}

              Now substitute uu back in:

              cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

            So, the result is: 2cos5(x)5\frac{2 \cos^{5}{\left(x \right)}}{5}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u2du\int u^{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          The result is: cos7(x)7+2cos5(x)5cos3(x)3- \frac{\cos^{7}{\left(x \right)}}{7} + \frac{2 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 32cos7(x)7+64cos5(x)532cos3(x)3- \frac{32 \cos^{7}{\left(x \right)}}{7} + \frac{64 \cos^{5}{\left(x \right)}}{5} - \frac{32 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (16sin5(x))dx=16sin5(x)dx\int \left(- 16 \sin^{5}{\left(x \right)}\right)\, dx = - 16 \int \sin^{5}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)=(1cos2(x))2sin(x)\sin^{5}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)}

      2. Rewrite the integrand:

        (1cos2(x))2sin(x)=sin(x)cos4(x)2sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} = \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

      3. Integrate term-by-term:

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u4du\int u^{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2sin(x)cos2(x))dx=2sin(x)cos2(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u2du\int u^{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          So, the result is: 2cos3(x)3\frac{2 \cos^{3}{\left(x \right)}}{3}

        1. The integral of sine is negative cosine:

          sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

        The result is: cos5(x)5+2cos3(x)3cos(x)- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      So, the result is: 16cos5(x)532cos3(x)3+16cos(x)\frac{16 \cos^{5}{\left(x \right)}}{5} - \frac{32 \cos^{3}{\left(x \right)}}{3} + 16 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (40sin3(x)cos2(x))dx=40sin3(x)cos2(x)dx\int \left(- 40 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 40 \int \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos2(x)=(1cos2(x))sin(x)cos2(x)\sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u4u2)du\int \left(u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u55u33\frac{u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 8cos5(x)+40cos3(x)3- 8 \cos^{5}{\left(x \right)} + \frac{40 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      20sin3(x)dx=20sin3(x)dx\int 20 \sin^{3}{\left(x \right)}\, dx = 20 \int \sin^{3}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)=(1cos2(x))sin(x)\sin^{3}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u21)du\int \left(u^{2} - 1\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          1. The integral of a constant is the constant times the variable of integration:

            (1)du=u\int \left(-1\right)\, du = - u

          The result is: u33u\frac{u^{3}}{3} - u

        Now substitute uu back in:

        cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      So, the result is: 20cos3(x)320cos(x)\frac{20 \cos^{3}{\left(x \right)}}{3} - 20 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      10sin(x)cos2(x)dx=10sin(x)cos2(x)dx\int 10 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 10 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u2du\int u^{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 10cos3(x)3- \frac{10 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (5sin(x))dx=5sin(x)dx\int \left(- 5 \sin{\left(x \right)}\right)\, dx = - 5 \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 5cos(x)5 \cos{\left(x \right)}

    The result is: 32cos7(x)7+8cos5(x)14cos3(x)3+cos(x)- \frac{32 \cos^{7}{\left(x \right)}}{7} + 8 \cos^{5}{\left(x \right)} - \frac{14 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}

  3. Now simplify:

    (96cos6(x)+168cos4(x)98cos2(x)+21)cos(x)21\frac{\left(- 96 \cos^{6}{\left(x \right)} + 168 \cos^{4}{\left(x \right)} - 98 \cos^{2}{\left(x \right)} + 21\right) \cos{\left(x \right)}}{21}

  4. Add the constant of integration:

    (96cos6(x)+168cos4(x)98cos2(x)+21)cos(x)21+constant\frac{\left(- 96 \cos^{6}{\left(x \right)} + 168 \cos^{4}{\left(x \right)} - 98 \cos^{2}{\left(x \right)} + 21\right) \cos{\left(x \right)}}{21}+ \mathrm{constant}


The answer is:

(96cos6(x)+168cos4(x)98cos2(x)+21)cos(x)21+constant\frac{\left(- 96 \cos^{6}{\left(x \right)} + 168 \cos^{4}{\left(x \right)} - 98 \cos^{2}{\left(x \right)} + 21\right) \cos{\left(x \right)}}{21}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                               7            3            
 |                                   5      32*cos (x)   14*cos (x)         
 | sin(5*x)*cos(2*x)*1 dx = C + 8*cos (x) - ---------- - ---------- + cos(x)
 |                                              7            3              
/                                                                           
cos(7x)14cos(3x)6-{{\cos \left(7\,x\right)}\over{14}}-{{\cos \left(3\,x\right) }\over{6}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
5    5*cos(2)*cos(5)   2*sin(2)*sin(5)
-- - --------------- - ---------------
21          21                21      
5213cos7+7cos342{{5}\over{21}}-{{3\,\cos 7+7\,\cos 3}\over{42}}
=
=
5    5*cos(2)*cos(5)   2*sin(2)*sin(5)
-- - --------------- - ---------------
21          21                21      
5cos(2)cos(5)212sin(2)sin(5)21+521- \frac{5 \cos{\left(2 \right)} \cos{\left(5 \right)}}{21} - \frac{2 \sin{\left(2 \right)} \sin{\left(5 \right)}}{21} + \frac{5}{21}
Numerical answer [src]
0.349243826504124
0.349243826504124
The graph
Integral of sin(5x)cos(2x)dx dx

    Use the examples entering the upper and lower limits of integration.