Mister Exam

Integral of sin(5x)cos(2x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  sin(5*x)*cos(2*x)*1 dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \cos{\left(2 x \right)} 1\, dx$$
Integral(sin(5*x)*cos(2*x)*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            The result is:

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          The result is:

        Method #3

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          The result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Rewrite the integrand:

      3. Integrate term-by-term:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        1. The integral of sine is negative cosine:

        The result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of is when :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          The result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of is when :

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               7            3            
 |                                   5      32*cos (x)   14*cos (x)         
 | sin(5*x)*cos(2*x)*1 dx = C + 8*cos (x) - ---------- - ---------- + cos(x)
 |                                              7            3              
/                                                                           
$$-{{\cos \left(7\,x\right)}\over{14}}-{{\cos \left(3\,x\right) }\over{6}}$$
The graph
The answer [src]
5    5*cos(2)*cos(5)   2*sin(2)*sin(5)
-- - --------------- - ---------------
21          21                21      
$${{5}\over{21}}-{{3\,\cos 7+7\,\cos 3}\over{42}}$$
=
=
5    5*cos(2)*cos(5)   2*sin(2)*sin(5)
-- - --------------- - ---------------
21          21                21      
$$- \frac{5 \cos{\left(2 \right)} \cos{\left(5 \right)}}{21} - \frac{2 \sin{\left(2 \right)} \sin{\left(5 \right)}}{21} + \frac{5}{21}$$
Numerical answer [src]
0.349243826504124
0.349243826504124
The graph
Integral of sin(5x)cos(2x)dx dx

    Use the examples entering the upper and lower limits of integration.