Mister Exam

Integral of sin(mx)cos(nx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
  /                     
 |                      
 |  sin(m*x)*cos(n*x) dx
 |                      
/                       
-pi                     
$$\int\limits_{- \pi}^{\pi} \sin{\left(m x \right)} \cos{\left(n x \right)}\, dx$$
The answer (Indefinite) [src]
                              //                     0                       for And(m = 0, n = 0)\
                              ||                                                                  |
                              ||                    2                                             |
                              ||                 cos (n*x)                                        |
                              ||                 ---------                        for m = -n      |
                              ||                    2*n                                           |
  /                           ||                                                                  |
 |                            ||                    2                                             |
 | sin(m*x)*cos(n*x) dx = C + |<                -cos (n*x)                                        |
 |                            ||                -----------                        for m = n      |
/                             ||                    2*n                                           |
                              ||                                                                  |
                              ||  m*cos(m*x)*cos(n*x)   n*sin(m*x)*sin(n*x)                       |
                              ||- ------------------- - -------------------        otherwise      |
                              ||         2    2                2    2                             |
                              ||        m  - n                m  - n                              |
                              \\                                                                  /
$$-{{\cos \left(\left(n+m\right)\,x\right)}\over{2\,\left(n+m\right) }}-{{\cos \left(\left(m-n\right)\,x\right)}\over{2\,\left(m-n\right) }}$$
The answer [src]
0
$$0$$
=
=
0
$$0$$

    Use the examples entering the upper and lower limits of integration.