Mister Exam

Integral of (x³-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |  / 3      \   
 |  \x  - 2*x/ dx
 |               
/                
-1               
12(x32x)dx\int\limits_{-1}^{2} \left(x^{3} - 2 x\right)\, dx
Integral(x^3 - 2*x, (x, -1, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2x)dx=2xdx\int \left(- 2 x\right)\, dx = - 2 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2- x^{2}

    The result is: x44x2\frac{x^{4}}{4} - x^{2}

  2. Add the constant of integration:

    x44x2+constant\frac{x^{4}}{4} - x^{2}+ \mathrm{constant}


The answer is:

x44x2+constant\frac{x^{4}}{4} - x^{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                           4
 | / 3      \           2   x 
 | \x  - 2*x/ dx = C - x  + --
 |                          4 
/                             
(x32x)dx=C+x44x2\int \left(x^{3} - 2 x\right)\, dx = C + \frac{x^{4}}{4} - x^{2}
The graph
-1.00-0.75-0.50-0.252.000.000.250.500.751.001.251.501.755-5
The answer [src]
3/4
34\frac{3}{4}
=
=
3/4
34\frac{3}{4}
3/4
Numerical answer [src]
0.75
0.75
The graph
Integral of (x³-2x) dx

    Use the examples entering the upper and lower limits of integration.