Mister Exam

Integral of ₂∫⁴(4x³-2x²)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |     /   3      2\   
 |  16*\4*x  - 2*x / dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} 16 \left(4 x^{3} - 2 x^{2}\right)\, dx$$
Integral(16*(4*x^3 - 2*x^2), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                       3
 |    /   3      2\              4   32*x 
 | 16*\4*x  - 2*x / dx = C + 16*x  - -----
 |                                     3  
/                                         
$$\int 16 \left(4 x^{3} - 2 x^{2}\right)\, dx = C + 16 x^{4} - \frac{32 x^{3}}{3}$$
The graph
The answer [src]
16/3
$$\frac{16}{3}$$
=
=
16/3
$$\frac{16}{3}$$
16/3
Numerical answer [src]
5.33333333333333
5.33333333333333

    Use the examples entering the upper and lower limits of integration.