Integral of x/(1+cos(x)) dx
The solution
The answer (Indefinite)
[src]
/
|
| x / 2/x\\ /x\
| ---------- dx = C - log|1 + tan |-|| + x*tan|-|
| 1 + cos(x) \ \2// \2/
|
/
$${{\left(\sin ^2x+\cos ^2x+2\,\cos x+1\right)\,\log \left(\sin ^2x+
\cos ^2x+2\,\cos x+1\right)+2\,x\,\sin x}\over{\sin ^2x+\cos ^2x+2\,
\cos x+1}}$$
/ 2 \
- log\1 + tan (1/2)/ + tan(1/2)
$${{\left(\sin ^21+\cos ^21+2\,\cos 1+1\right)\,\log \left(\sin ^21+
\cos ^21+2\,\cos 1+1\right)+2\,\sin 1}\over{\sin ^21+\cos ^21+2\,
\cos 1+1}}-2\,\log 2$$
=
/ 2 \
- log\1 + tan (1/2)/ + tan(1/2)
$$- \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)} + \tan{\left(\frac{1}{2} \right)}$$
Use the examples entering the upper and lower limits of integration.