Mister Exam

Other calculators

Integral of (2x³-2x²+2x-2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  /   3      2          \   
 |  \2*x  - 2*x  + 2*x - 2/ dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \left(\left(2 x + \left(2 x^{3} - 2 x^{2}\right)\right) - 2\right)\, dx$$
Integral(2*x^3 - 2*x^2 + 2*x - 2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                     
 |                                        4            3
 | /   3      2          \           2   x          2*x 
 | \2*x  - 2*x  + 2*x - 2/ dx = C + x  + -- - 2*x - ----
 |                                       2           3  
/                                                       
$$\int \left(\left(2 x + \left(2 x^{3} - 2 x^{2}\right)\right) - 2\right)\, dx = C + \frac{x^{4}}{2} - \frac{2 x^{3}}{3} + x^{2} - 2 x$$
The graph
The answer [src]
-7/6
$$- \frac{7}{6}$$
=
=
-7/6
$$- \frac{7}{6}$$
-7/6
Numerical answer [src]
-1.16666666666667
-1.16666666666667

    Use the examples entering the upper and lower limits of integration.