Mister Exam

Integral of (x³+2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3              
  /              
 |               
 |  / 3      \   
 |  \x  + 2*x/ dx
 |               
/                
-1               
13(x3+2x)dx\int\limits_{-1}^{3} \left(x^{3} + 2 x\right)\, dx
Integral(x^3 + 2*x, (x, -1, 3))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2x^{2}

    The result is: x44+x2\frac{x^{4}}{4} + x^{2}

  2. Add the constant of integration:

    x44+x2+constant\frac{x^{4}}{4} + x^{2}+ \mathrm{constant}


The answer is:

x44+x2+constant\frac{x^{4}}{4} + x^{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                           4
 | / 3      \           2   x 
 | \x  + 2*x/ dx = C + x  + --
 |                          4 
/                             
(x3+2x)dx=C+x44+x2\int \left(x^{3} + 2 x\right)\, dx = C + \frac{x^{4}}{4} + x^{2}
The graph
-1.0-0.53.00.00.51.01.52.02.5-5050
The answer [src]
28
2828
=
=
28
2828
28
Numerical answer [src]
28.0
28.0

    Use the examples entering the upper and lower limits of integration.