Mister Exam

Integral of x½ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |  x*1/2 dx
 |          
/           
0           
01x12dx\int\limits_{0}^{1} x \frac{1}{2}\, dx
Integral(x*(1/2), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    x12dx=xdx2\int x \frac{1}{2}\, dx = \frac{\int x\, dx}{2}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: x24\frac{x^{2}}{4}

  2. Add the constant of integration:

    x24+constant\frac{x^{2}}{4}+ \mathrm{constant}


The answer is:

x24+constant\frac{x^{2}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                2
 |                x 
 | x*1/2 dx = C + --
 |                4 
/                   
x24{{x^2}\over{4}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
1/4
14{{1}\over{4}}
=
=
1/4
14\frac{1}{4}
Numerical answer [src]
0.25
0.25
The graph
Integral of x½ dx

    Use the examples entering the upper and lower limits of integration.