Mister Exam

Integral of (cos⁵x)½ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     5      
 |  cos (x)   
 |  ------- dx
 |     2      
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\cos^{5}{\left(x \right)}}{2}\, dx$$
Integral(cos(x)^5/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. There are multiple ways to do this integral.

      Method #1

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is when :

            Now substitute back in:

          So, the result is:

        1. The integral of cosine is sine:

        The result is:

      Method #2

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is when :

            Now substitute back in:

          So, the result is:

        1. The integral of cosine is sine:

        The result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                            
 |    5                         3         5   
 | cos (x)          sin(x)   sin (x)   sin (x)
 | ------- dx = C + ------ - ------- + -------
 |    2               2         3         10  
 |                                            
/                                             
$$\int \frac{\cos^{5}{\left(x \right)}}{2}\, dx = C + \frac{\sin^{5}{\left(x \right)}}{10} - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{2}$$
The graph
The answer [src]
            3         5   
sin(1)   sin (1)   sin (1)
------ - ------- + -------
  2         3         10  
$$- \frac{\sin^{3}{\left(1 \right)}}{3} + \frac{\sin^{5}{\left(1 \right)}}{10} + \frac{\sin{\left(1 \right)}}{2}$$
=
=
            3         5   
sin(1)   sin (1)   sin (1)
------ - ------- + -------
  2         3         10  
$$- \frac{\sin^{3}{\left(1 \right)}}{3} + \frac{\sin^{5}{\left(1 \right)}}{10} + \frac{\sin{\left(1 \right)}}{2}$$
sin(1)/2 - sin(1)^3/3 + sin(1)^5/10
Numerical answer [src]
0.264316406455608
0.264316406455608

    Use the examples entering the upper and lower limits of integration.