Integral of (cos⁵x)½ dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos5(x)dx=2∫cos5(x)dx
-
Rewrite the integrand:
cos5(x)=(1−sin2(x))2cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(1−sin2(x))2cos(x)=sin4(x)cos(x)−2sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(x)cos(x))dx=−2∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −32sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 5sin5(x)−32sin3(x)+sin(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))2cos(x)=sin4(x)cos(x)−2sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(x)cos(x))dx=−2∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −32sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 5sin5(x)−32sin3(x)+sin(x)
So, the result is: 10sin5(x)−3sin3(x)+2sin(x)
-
Add the constant of integration:
10sin5(x)−3sin3(x)+2sin(x)+constant
The answer is:
10sin5(x)−3sin3(x)+2sin(x)+constant
The answer (Indefinite)
[src]
/
|
| 5 3 5
| cos (x) sin(x) sin (x) sin (x)
| ------- dx = C + ------ - ------- + -------
| 2 2 3 10
|
/
∫2cos5(x)dx=C+10sin5(x)−3sin3(x)+2sin(x)
The graph
3 5
sin(1) sin (1) sin (1)
------ - ------- + -------
2 3 10
−3sin3(1)+10sin5(1)+2sin(1)
=
3 5
sin(1) sin (1) sin (1)
------ - ------- + -------
2 3 10
−3sin3(1)+10sin5(1)+2sin(1)
sin(1)/2 - sin(1)^3/3 + sin(1)^5/10
Use the examples entering the upper and lower limits of integration.