1 / | | 5 | cos (x) | ------- dx | 2 | / 0
Integral(cos(x)^5/2, (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
Add the constant of integration:
The answer is:
/ | | 5 3 5 | cos (x) sin(x) sin (x) sin (x) | ------- dx = C + ------ - ------- + ------- | 2 2 3 10 | /
3 5 sin(1) sin (1) sin (1) ------ - ------- + ------- 2 3 10
=
3 5 sin(1) sin (1) sin (1) ------ - ------- + ------- 2 3 10
sin(1)/2 - sin(1)^3/3 + sin(1)^5/10
Use the examples entering the upper and lower limits of integration.