Mister Exam

Other calculators

Integral of sinx/(3+2cosx)½ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  /   sin(x)   \   
 |  |------------|   
 |  \3 + 2*cos(x)/   
 |  -------------- dx
 |        2          
 |                   
/                    
0                    
0112cos(x)+3sin(x)2dx\int\limits_{0}^{1} \frac{\frac{1}{2 \cos{\left(x \right)} + 3} \sin{\left(x \right)}}{2}\, dx
Integral((sin(x)/(3 + 2*cos(x)))/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    12cos(x)+3sin(x)2dx=sin(x)2cos(x)+3dx2\int \frac{\frac{1}{2 \cos{\left(x \right)} + 3} \sin{\left(x \right)}}{2}\, dx = \frac{\int \frac{\sin{\left(x \right)}}{2 \cos{\left(x \right)} + 3}\, dx}{2}

    1. Let u=2cos(x)+3u = 2 \cos{\left(x \right)} + 3.

      Then let du=2sin(x)dxdu = - 2 \sin{\left(x \right)} dx and substitute du2- \frac{du}{2}:

      (12u)du\int \left(- \frac{1}{2 u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=1udu2\int \frac{1}{u}\, du = - \frac{\int \frac{1}{u}\, du}{2}

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: log(u)2- \frac{\log{\left(u \right)}}{2}

      Now substitute uu back in:

      log(2cos(x)+3)2- \frac{\log{\left(2 \cos{\left(x \right)} + 3 \right)}}{2}

    So, the result is: log(2cos(x)+3)4- \frac{\log{\left(2 \cos{\left(x \right)} + 3 \right)}}{4}

  2. Add the constant of integration:

    log(2cos(x)+3)4+constant- \frac{\log{\left(2 \cos{\left(x \right)} + 3 \right)}}{4}+ \mathrm{constant}


The answer is:

log(2cos(x)+3)4+constant- \frac{\log{\left(2 \cos{\left(x \right)} + 3 \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 | /   sin(x)   \                           
 | |------------|                           
 | \3 + 2*cos(x)/          log(3 + 2*cos(x))
 | -------------- dx = C - -----------------
 |       2                         4        
 |                                          
/                                           
12cos(x)+3sin(x)2dx=Clog(2cos(x)+3)4\int \frac{\frac{1}{2 \cos{\left(x \right)} + 3} \sin{\left(x \right)}}{2}\, dx = C - \frac{\log{\left(2 \cos{\left(x \right)} + 3 \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
  log(3/2 + cos(1))   log(5/2)
- ----------------- + --------
          4              4    
log(cos(1)+32)4+log(52)4- \frac{\log{\left(\cos{\left(1 \right)} + \frac{3}{2} \right)}}{4} + \frac{\log{\left(\frac{5}{2} \right)}}{4}
=
=
  log(3/2 + cos(1))   log(5/2)
- ----------------- + --------
          4              4    
log(cos(1)+32)4+log(52)4- \frac{\log{\left(\cos{\left(1 \right)} + \frac{3}{2} \right)}}{4} + \frac{\log{\left(\frac{5}{2} \right)}}{4}
-log(3/2 + cos(1))/4 + log(5/2)/4
Numerical answer [src]
0.0507981864614772
0.0507981864614772

    Use the examples entering the upper and lower limits of integration.