Integral of sinx/(3+2cosx)½ dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫22cos(x)+31sin(x)dx=2∫2cos(x)+3sin(x)dx
-
Let u=2cos(x)+3.
Then let du=−2sin(x)dx and substitute −2du:
∫(−2u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−2∫u1du
-
The integral of u1 is log(u).
So, the result is: −2log(u)
Now substitute u back in:
−2log(2cos(x)+3)
So, the result is: −4log(2cos(x)+3)
-
Add the constant of integration:
−4log(2cos(x)+3)+constant
The answer is:
−4log(2cos(x)+3)+constant
The answer (Indefinite)
[src]
/
|
| / sin(x) \
| |------------|
| \3 + 2*cos(x)/ log(3 + 2*cos(x))
| -------------- dx = C - -----------------
| 2 4
|
/
∫22cos(x)+31sin(x)dx=C−4log(2cos(x)+3)
The graph
log(3/2 + cos(1)) log(5/2)
- ----------------- + --------
4 4
−4log(cos(1)+23)+4log(25)
=
log(3/2 + cos(1)) log(5/2)
- ----------------- + --------
4 4
−4log(cos(1)+23)+4log(25)
-log(3/2 + cos(1))/4 + log(5/2)/4
Use the examples entering the upper and lower limits of integration.