Mister Exam

Other calculators

Integral of sinx/(3+2cosx)½ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  /   sin(x)   \   
 |  |------------|   
 |  \3 + 2*cos(x)/   
 |  -------------- dx
 |        2          
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{\frac{1}{2 \cos{\left(x \right)} + 3} \sin{\left(x \right)}}{2}\, dx$$
Integral((sin(x)/(3 + 2*cos(x)))/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | /   sin(x)   \                           
 | |------------|                           
 | \3 + 2*cos(x)/          log(3 + 2*cos(x))
 | -------------- dx = C - -----------------
 |       2                         4        
 |                                          
/                                           
$$\int \frac{\frac{1}{2 \cos{\left(x \right)} + 3} \sin{\left(x \right)}}{2}\, dx = C - \frac{\log{\left(2 \cos{\left(x \right)} + 3 \right)}}{4}$$
The graph
The answer [src]
  log(3/2 + cos(1))   log(5/2)
- ----------------- + --------
          4              4    
$$- \frac{\log{\left(\cos{\left(1 \right)} + \frac{3}{2} \right)}}{4} + \frac{\log{\left(\frac{5}{2} \right)}}{4}$$
=
=
  log(3/2 + cos(1))   log(5/2)
- ----------------- + --------
          4              4    
$$- \frac{\log{\left(\cos{\left(1 \right)} + \frac{3}{2} \right)}}{4} + \frac{\log{\left(\frac{5}{2} \right)}}{4}$$
-log(3/2 + cos(1))/4 + log(5/2)/4
Numerical answer [src]
0.0507981864614772
0.0507981864614772

    Use the examples entering the upper and lower limits of integration.