Mister Exam

Other calculators

Integral of 2*sin(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 2               
  /              
 |               
 |  2*sin(3*x) dx
 |               
/                
0                
0π22sin(3x)dx\int\limits_{0}^{\frac{\pi}{2}} 2 \sin{\left(3 x \right)}\, dx
Integral(2*sin(3*x), (x, 0, pi/2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2sin(3x)dx=2sin(3x)dx\int 2 \sin{\left(3 x \right)}\, dx = 2 \int \sin{\left(3 x \right)}\, dx

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      sin(u)3du\int \frac{\sin{\left(u \right)}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du3\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

      Now substitute uu back in:

      cos(3x)3- \frac{\cos{\left(3 x \right)}}{3}

    So, the result is: 2cos(3x)3- \frac{2 \cos{\left(3 x \right)}}{3}

  2. Add the constant of integration:

    2cos(3x)3+constant- \frac{2 \cos{\left(3 x \right)}}{3}+ \mathrm{constant}


The answer is:

2cos(3x)3+constant- \frac{2 \cos{\left(3 x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                     2*cos(3*x)
 | 2*sin(3*x) dx = C - ----------
 |                         3     
/                                
2sin(3x)dx=C2cos(3x)3\int 2 \sin{\left(3 x \right)}\, dx = C - \frac{2 \cos{\left(3 x \right)}}{3}
The graph
0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.55-5
The answer [src]
2/3
23\frac{2}{3}
=
=
2/3
23\frac{2}{3}
2/3
Numerical answer [src]
0.666666666666667
0.666666666666667

    Use the examples entering the upper and lower limits of integration.