Mister Exam

Other calculators

Integral of sqrt(2sin3x)cos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |    ____________            
 |  \/ 2*sin(3*x) *cos(3*x) dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \sqrt{2 \sin{\left(3 x \right)}} \cos{\left(3 x \right)}\, dx$$
Integral(sqrt(2*sin(3*x))*cos(3*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                      ___    3/2     
 |   ____________                   2*\/ 2 *sin   (3*x)
 | \/ 2*sin(3*x) *cos(3*x) dx = C + -------------------
 |                                           9         
/                                                      
$$\int \sqrt{2 \sin{\left(3 x \right)}} \cos{\left(3 x \right)}\, dx = C + \frac{2 \sqrt{2} \sin^{\frac{3}{2}}{\left(3 x \right)}}{9}$$
The graph
The answer [src]
    ___    3/2   
2*\/ 2 *sin   (3)
-----------------
        9        
$$\frac{2 \sqrt{2} \sin^{\frac{3}{2}}{\left(3 \right)}}{9}$$
=
=
    ___    3/2   
2*\/ 2 *sin   (3)
-----------------
        9        
$$\frac{2 \sqrt{2} \sin^{\frac{3}{2}}{\left(3 \right)}}{9}$$
2*sqrt(2)*sin(3)^(3/2)/9
Numerical answer [src]
0.0166603980343461
0.0166603980343461

    Use the examples entering the upper and lower limits of integration.