1 / | | ____________ | \/ 2*sin(3*x) *cos(3*x) dx | / 0
Integral(sqrt(2*sin(3*x))*cos(3*x), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | ___ 3/2 | ____________ 2*\/ 2 *sin (3*x) | \/ 2*sin(3*x) *cos(3*x) dx = C + ------------------- | 9 /
___ 3/2 2*\/ 2 *sin (3) ----------------- 9
=
___ 3/2 2*\/ 2 *sin (3) ----------------- 9
2*sqrt(2)*sin(3)^(3/2)/9
Use the examples entering the upper and lower limits of integration.