Mister Exam

Integral of 12sin3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  12*sin(3*x) dx
 |                
/                 
0                 
0112sin(3x)dx\int\limits_{0}^{1} 12 \sin{\left(3 x \right)}\, dx
Integral(12*sin(3*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    12sin(3x)dx=12sin(3x)dx\int 12 \sin{\left(3 x \right)}\, dx = 12 \int \sin{\left(3 x \right)}\, dx

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      sin(u)3du\int \frac{\sin{\left(u \right)}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du3\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

      Now substitute uu back in:

      cos(3x)3- \frac{\cos{\left(3 x \right)}}{3}

    So, the result is: 4cos(3x)- 4 \cos{\left(3 x \right)}

  2. Add the constant of integration:

    4cos(3x)+constant- 4 \cos{\left(3 x \right)}+ \mathrm{constant}


The answer is:

4cos(3x)+constant- 4 \cos{\left(3 x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 | 12*sin(3*x) dx = C - 4*cos(3*x)
 |                                
/                                 
12sin(3x)dx=C4cos(3x)\int 12 \sin{\left(3 x \right)}\, dx = C - 4 \cos{\left(3 x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2020
The answer [src]
4 - 4*cos(3)
44cos(3)4 - 4 \cos{\left(3 \right)}
=
=
4 - 4*cos(3)
44cos(3)4 - 4 \cos{\left(3 \right)}
4 - 4*cos(3)
Numerical answer [src]
7.95996998640178
7.95996998640178

    Use the examples entering the upper and lower limits of integration.