Integral of 12sin3x dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫12sin(3x)dx=12∫sin(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
So, the result is: −4cos(3x)
-
Add the constant of integration:
−4cos(3x)+constant
The answer is:
−4cos(3x)+constant
The answer (Indefinite)
[src]
/
|
| 12*sin(3*x) dx = C - 4*cos(3*x)
|
/
∫12sin(3x)dx=C−4cos(3x)
The graph
4−4cos(3)
=
4−4cos(3)
Use the examples entering the upper and lower limits of integration.