Integral of (3x+2)sin3xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=3x.
Then let du=3dx and substitute du:
∫(3usin(u)+32sin(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3usin(u)du=3∫usin(u)du
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=sin(u).
Then du(u)=1.
To find v(u):
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(u))du=−∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: −sin(u)
So, the result is: −3ucos(u)+3sin(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫32sin(u)du=32∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −32cos(u)
The result is: −3ucos(u)+3sin(u)−32cos(u)
Now substitute u back in:
−xcos(3x)+3sin(3x)−32cos(3x)
Method #2
-
Rewrite the integrand:
(3x+2)sin(3x)1=3xsin(3x)+2sin(3x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3xsin(3x)dx=3∫xsin(3x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(3x).
Then du(x)=1.
To find v(x):
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3cos(3x))dx=−3∫cos(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3cos(u)du=3∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 3sin(u)
Now substitute u back in:
3sin(3x)
So, the result is: −9sin(3x)
So, the result is: −xcos(3x)+3sin(3x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(3x)dx=2∫sin(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
So, the result is: −32cos(3x)
The result is: −xcos(3x)+3sin(3x)−32cos(3x)
Method #3
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=3x+2 and let dv(x)=sin(3x).
Then du(x)=3.
To find v(x):
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(3x))dx=−∫cos(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3cos(u)du=3∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 3sin(u)
Now substitute u back in:
3sin(3x)
So, the result is: −3sin(3x)
Method #4
-
Rewrite the integrand:
(3x+2)sin(3x)1=3xsin(3x)+2sin(3x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3xsin(3x)dx=3∫xsin(3x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(3x).
Then du(x)=1.
To find v(x):
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3cos(3x))dx=−3∫cos(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3cos(u)du=3∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 3sin(u)
Now substitute u back in:
3sin(3x)
So, the result is: −9sin(3x)
So, the result is: −xcos(3x)+3sin(3x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(3x)dx=2∫sin(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
So, the result is: −32cos(3x)
The result is: −xcos(3x)+3sin(3x)−32cos(3x)
-
Add the constant of integration:
−xcos(3x)+3sin(3x)−32cos(3x)+constant
The answer is:
−xcos(3x)+3sin(3x)−32cos(3x)+constant
The answer (Indefinite)
[src]
/
| 2*cos(3*x) sin(3*x)
| (3*x + 2)*sin(3*x)*1 dx = C - ---------- + -------- - x*cos(3*x)
| 3 3
/
3sin(3x)−3xcos(3x)−2cos(3x)
The graph
2 5*cos(3) sin(3)
- - -------- + ------
3 3 3
3sin3−5cos3+32
=
2 5*cos(3) sin(3)
- - -------- + ------
3 3 3
3sin(3)+32−35cos(3)
Use the examples entering the upper and lower limits of integration.