1 / | | (3*x + 2)*sin(3*x)*1 dx | / 0
Integral((3*x + 2)*sin(3*x)*1, (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of sine is negative cosine:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | 2*cos(3*x) sin(3*x) | (3*x + 2)*sin(3*x)*1 dx = C - ---------- + -------- - x*cos(3*x) | 3 3 /
2 5*cos(3) sin(3) - - -------- + ------ 3 3 3
=
2 5*cos(3) sin(3) - - -------- + ------ 3 3 3
Use the examples entering the upper and lower limits of integration.