Mister Exam

Integral of (2-x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  (2 - x)*1 dx
 |              
/               
0               
01(x+2)1dx\int\limits_{0}^{1} \left(- x + 2\right) 1\, dx
Integral(2 - x*1, (x, 0, 1))
Detail solution
  1. Let u=2xu = 2 - x.

    Then let du=dxdu = - dx and substitute du- du:

    udu\int u\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      (u)du=udu\int \left(- u\right)\, du = - \int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      So, the result is: u22- \frac{u^{2}}{2}

    Now substitute uu back in:

    (2x)22- \frac{\left(2 - x\right)^{2}}{2}

  2. Now simplify:

    (x2)22- \frac{\left(x - 2\right)^{2}}{2}

  3. Add the constant of integration:

    (x2)22+constant- \frac{\left(x - 2\right)^{2}}{2}+ \mathrm{constant}


The answer is:

(x2)22+constant- \frac{\left(x - 2\right)^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          2
 |                    (2 - x) 
 | (2 - x)*1 dx = C - --------
 |                       2    
/                             
2xx222\,x-{{x^2}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
3/2
32{{3}\over{2}}
=
=
3/2
32\frac{3}{2}
Numerical answer [src]
1.5
1.5
The graph
Integral of (2-x)dx dx

    Use the examples entering the upper and lower limits of integration.