Mister Exam

Integral of (x2-x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2            
  /            
 |             
 |  (x2 - x) dx
 |             
/              
1              
12(x+x2)dx\int\limits_{1}^{2} \left(- x + x_{2}\right)\, dx
Integral(x2 - x, (x, 1, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      x2dx=xx2\int x_{2}\, dx = x x_{2}

    The result is: x22+xx2- \frac{x^{2}}{2} + x x_{2}

  2. Now simplify:

    x(x+2x2)2\frac{x \left(- x + 2 x_{2}\right)}{2}

  3. Add the constant of integration:

    x(x+2x2)2+constant\frac{x \left(- x + 2 x_{2}\right)}{2}+ \mathrm{constant}


The answer is:

x(x+2x2)2+constant\frac{x \left(- x + 2 x_{2}\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                   2       
 |                   x        
 | (x2 - x) dx = C - -- + x*x2
 |                   2        
/                             
(x+x2)dx=Cx22+xx2\int \left(- x + x_{2}\right)\, dx = C - \frac{x^{2}}{2} + x x_{2}
The answer [src]
-3/2 + x2
x232x_{2} - \frac{3}{2}
=
=
-3/2 + x2
x232x_{2} - \frac{3}{2}
-3/2 + x2

    Use the examples entering the upper and lower limits of integration.