Mister Exam

Other calculators


(x^5)e^(-x^2)

Integral of (x^5)e^(-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |        2   
 |   5  -x    
 |  x *E    dx
 |            
/             
0             
01ex2x5dx\int\limits_{0}^{1} e^{- x^{2}} x^{5}\, dx
Integral(x^5*E^(-x^2), (x, 0, 1))
Detail solution
  1. Let u=x2u = - x^{2}.

    Then let du=2xdxdu = - 2 x dx and substitute du2- \frac{du}{2}:

    (u2eu2)du\int \left(- \frac{u^{2} e^{u}}{2}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      u2eudu=u2eudu2\int u^{2} e^{u}\, du = - \frac{\int u^{2} e^{u}\, du}{2}

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=u2u{\left(u \right)} = u^{2} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

        Then du(u)=2u\operatorname{du}{\left(u \right)} = 2 u.

        To find v(u)v{\left(u \right)}:

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now evaluate the sub-integral.

      2. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=2uu{\left(u \right)} = 2 u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

        Then du(u)=2\operatorname{du}{\left(u \right)} = 2.

        To find v(u)v{\left(u \right)}:

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        2eudu=2eudu\int 2 e^{u}\, du = 2 \int e^{u}\, du

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: 2eu2 e^{u}

      So, the result is: u2eu2+ueueu- \frac{u^{2} e^{u}}{2} + u e^{u} - e^{u}

    Now substitute uu back in:

    x4ex22x2ex2ex2- \frac{x^{4} e^{- x^{2}}}{2} - x^{2} e^{- x^{2}} - e^{- x^{2}}

  2. Now simplify:

    (x42+x2+1)ex2- \left(\frac{x^{4}}{2} + x^{2} + 1\right) e^{- x^{2}}

  3. Add the constant of integration:

    (x42+x2+1)ex2+constant- \left(\frac{x^{4}}{2} + x^{2} + 1\right) e^{- x^{2}}+ \mathrm{constant}


The answer is:

(x42+x2+1)ex2+constant- \left(\frac{x^{4}}{2} + x^{2} + 1\right) e^{- x^{2}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                         2
 |       2             2         2    4  -x 
 |  5  -x            -x     2  -x    x *e   
 | x *E    dx = C - e    - x *e    - -------
 |                                      2   
/                                           
ex2x5dx=Cx4ex22x2ex2ex2\int e^{- x^{2}} x^{5}\, dx = C - \frac{x^{4} e^{- x^{2}}}{2} - x^{2} e^{- x^{2}} - e^{- x^{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
       -1
    5*e  
1 - -----
      2  
152e1 - \frac{5}{2 e}
=
=
       -1
    5*e  
1 - -----
      2  
152e1 - \frac{5}{2 e}
1 - 5*exp(-1)/2
Numerical answer [src]
0.0803013970713942
0.0803013970713942
The graph
Integral of (x^5)e^(-x^2) dx

    Use the examples entering the upper and lower limits of integration.