Integral of x^2-xdx dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −2x2
The result is: 3x3−2x2
-
Now simplify:
6x2(2x−3)
-
Add the constant of integration:
6x2(2x−3)+constant
The answer is:
6x2(2x−3)+constant
The answer (Indefinite)
[src]
/
| 2 3
| / 2 \ x x
| \x - x/ dx = C - -- + --
| 2 3
/
∫(x2−x)dx=C+3x3−2x2
The graph
Use the examples entering the upper and lower limits of integration.