Mister Exam

Other calculators

Integral of x^2-xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  / 2    \   
 |  \x  - x/ dx
 |             
/              
0              
01(x2x)dx\int\limits_{0}^{1} \left(x^{2} - x\right)\, dx
Integral(x^2 - x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    The result is: x33x22\frac{x^{3}}{3} - \frac{x^{2}}{2}

  2. Now simplify:

    x2(2x3)6\frac{x^{2} \left(2 x - 3\right)}{6}

  3. Add the constant of integration:

    x2(2x3)6+constant\frac{x^{2} \left(2 x - 3\right)}{6}+ \mathrm{constant}


The answer is:

x2(2x3)6+constant\frac{x^{2} \left(2 x - 3\right)}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         
 |                    2    3
 | / 2    \          x    x 
 | \x  - x/ dx = C - -- + --
 |                   2    3 
/                           
(x2x)dx=C+x33x22\int \left(x^{2} - x\right)\, dx = C + \frac{x^{3}}{3} - \frac{x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-0.500.25
The answer [src]
-1/6
16- \frac{1}{6}
=
=
-1/6
16- \frac{1}{6}
-1/6
Numerical answer [src]
-0.166666666666667
-0.166666666666667

    Use the examples entering the upper and lower limits of integration.