Integral of pi(3sin4x)^2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫π(3sin(4x))2dx=π∫(3sin(4x))2dx
-
Don't know the steps in finding this integral.
But the integral is
29xsin2(4x)+29xcos2(4x)−89sin(4x)cos(4x)
So, the result is: π(29xsin2(4x)+29xcos2(4x)−89sin(4x)cos(4x))
-
Now simplify:
89π(4xsin2(4x)+4xcos2(4x)−sin(4x)cos(4x))
-
Add the constant of integration:
89π(4xsin2(4x)+4xcos2(4x)−sin(4x)cos(4x))+constant
The answer is:
89π(4xsin2(4x)+4xcos2(4x)−sin(4x)cos(4x))+constant
The answer (Indefinite)
[src]
/
| / 2 2 \
| 2 | 9*cos(4*x)*sin(4*x) 9*x*cos (4*x) 9*x*sin (4*x)|
| pi*(3*sin(4*x)) dx = C + pi*|- ------------------- + ------------- + -------------|
| \ 8 2 2 /
/
∫π(3sin(4x))2dx=C+π(29xsin2(4x)+29xcos2(4x)−89sin(4x)cos(4x))
The graph
/1 cos(4)*sin(4)\
9*pi*|- - -------------|
\2 8 /
9π(−8sin(4)cos(4)+21)
=
/1 cos(4)*sin(4)\
9*pi*|- - -------------|
\2 8 /
9π(−8sin(4)cos(4)+21)
9*pi*(1/2 - cos(4)*sin(4)/8)
Use the examples entering the upper and lower limits of integration.