Mister Exam

Other calculators

Integral of pi(3sin4x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |                 2   
 |  pi*(3*sin(4*x))  dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \pi \left(3 \sin{\left(4 x \right)}\right)^{2}\, dx$$
Integral(pi*(3*sin(4*x))^2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                    
 |                              /                               2               2     \
 |                2             |  9*cos(4*x)*sin(4*x)   9*x*cos (4*x)   9*x*sin (4*x)|
 | pi*(3*sin(4*x))  dx = C + pi*|- ------------------- + ------------- + -------------|
 |                              \           8                  2               2      /
/                                                                                      
$$\int \pi \left(3 \sin{\left(4 x \right)}\right)^{2}\, dx = C + \pi \left(\frac{9 x \sin^{2}{\left(4 x \right)}}{2} + \frac{9 x \cos^{2}{\left(4 x \right)}}{2} - \frac{9 \sin{\left(4 x \right)} \cos{\left(4 x \right)}}{8}\right)$$
The graph
The answer [src]
     /1   cos(4)*sin(4)\
9*pi*|- - -------------|
     \2         8      /
$$9 \pi \left(- \frac{\sin{\left(4 \right)} \cos{\left(4 \right)}}{8} + \frac{1}{2}\right)$$
=
=
     /1   cos(4)*sin(4)\
9*pi*|- - -------------|
     \2         8      /
$$9 \pi \left(- \frac{\sin{\left(4 \right)} \cos{\left(4 \right)}}{8} + \frac{1}{2}\right)$$
9*pi*(1/2 - cos(4)*sin(4)/8)
Numerical answer [src]
12.3888266040138
12.3888266040138

    Use the examples entering the upper and lower limits of integration.