1 / | | 4 | x | ------ dx | 2 | 1 + x | / 0
Integral(x^4/(1 + x^2), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant is the constant times the variable of integration:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)
The result is:
Add the constant of integration:
The answer is:
/ | | 4 3 | x x | ------ dx = C - x + -- + atan(x) | 2 3 | 1 + x | /
2 pi - - + -- 3 4
=
2 pi - - + -- 3 4
-2/3 + pi/4
Use the examples entering the upper and lower limits of integration.