Mister Exam

Other calculators


x^4/(1+x^2)

Integral of x^4/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     4     
 |    x      
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x^{4}}{x^{2} + 1}\, dx$$
Integral(x^4/(1 + x^2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

      PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |    4                 3          
 |   x                 x           
 | ------ dx = C - x + -- + atan(x)
 |      2              3           
 | 1 + x                           
 |                                 
/                                  
$$\int \frac{x^{4}}{x^{2} + 1}\, dx = C + \frac{x^{3}}{3} - x + \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
  2   pi
- - + --
  3   4 
$$- \frac{2}{3} + \frac{\pi}{4}$$
=
=
  2   pi
- - + --
  3   4 
$$- \frac{2}{3} + \frac{\pi}{4}$$
-2/3 + pi/4
Numerical answer [src]
0.118731496730782
0.118731496730782
The graph
Integral of x^4/(1+x^2) dx

    Use the examples entering the upper and lower limits of integration.